1
|
Melnikova NB, Malygina DS, Vorobyova OA, Solovyeva AG, Belyaeva KL, Orekhov DV, Knyazev AV. Properties of Langmuir and immobilized layers of betulin diphosphate on aqueous solutions of zinc sulfate and on the surface of zinc oxide nanoparticles. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Połeć K, Broniatowski M, Wydro P, Hąc-Wydro K. The impact of β-myrcene – the main component of the hop essential oil – on the lipid films. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Wójcik A, Perczyk P, Wydro P, Broniatowski M. Dichlorobiphenyls and chlorinated benzoic acids – Emergent soil pollutants in model bacterial membranes. Langmuir monolayer and Grazing Incidence X-ray Diffraction studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction. Molecules 2017. [PMID: 28644410 PMCID: PMC6152121 DOI: 10.3390/molecules22071039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, the antibacterial activity of several ent-labdane derivatives of salvic acid (7α-hydroxy-8(17)-ent-labden-15-oic acid) was evaluated in vitro against the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus. For all of the compounds, the antibacterial activity was expressed as the minimum inhibitory concentration (MIC) in liquid media and minimum inhibitory amount (MIA) in solid media. Structure activity relationships (SAR) were employed to correlate the effect of the calculated lipophilicity parameters (logPow) on the inhibitory activity. Employing a phospholipidic bilayer (POPG) as a bacterial membrane model, ent-labdane-membrane interactions were simulated utilizing docking studies. The results indicate that (i) the presence of a carboxylic acid in the C-15 position, which acted as a hydrogen-bond donor (HBD), was essential for the antibacterial activity of the ent-labdanes; (ii) an increase in the length of the acylated chain at the C-7 position improved the antibacterial activity until an optimum length of five carbon atoms was reached; (iii) an increase in the length of the acylated chain by more than five carbon atoms resulted in a dramatic decrease in activity, which completely disappeared in acyl chains of more than nine carbon atoms; and (iv) the structural factors described above, including one HBD at C-15 and a hexanoyloxi moiety at C-7, had a good fit to a specific lipophilic range and antibacterial activity. The lipophilicity parameter has a predictive characteristic feature on the antibacterial activity of this class of compounds, to be considered in the design of new biologically active molecules.
Collapse
|
5
|
Ferreira JVN, Capello TM, Siqueira LJA, Lago JHG, Caseli L. Mechanism of Action of Thymol on Cell Membranes Investigated through Lipid Langmuir Monolayers at the Air-Water Interface and Molecular Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3234-3241. [PMID: 26982820 DOI: 10.1021/acs.langmuir.6b00600] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A major challenge in the design of biocidal drugs is to identify compounds with potential action on microorganisms and to understand at the molecular level their mechanism of action. In this study, thymol, a monoterpenoid found in the oil of leaves of Lippia sidoides with possible action in biological surfaces, was incorporated in lipid monolayers at the air-water interface that represented cell membrane models. The interaction of thymol with dipalmitoylphosphatidylcholine (DPPC) at the air-water interface was investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM), polarization-modulation reflection-absorption spectroscopy (PM-IRRAS), and molecular dynamics simulation. Thymol expands DPPC monolayers, decreases their surface elasticity, and changes the morphology of the lipid monolayer, which evidence the incorporation of this compound in the lipid Langmuir film. Such incorporation could be corroborated by PM-IRRAS since some specific bands for DPPC were changed upon thymol incorporation. Furthermore, potential of mean force obtained by molecular dynamics simulations indicates that the most stable position of the drug along the lipid film is near the hydrophobic regions of DPPC. These results may be useful to understand the interaction between thymol and cell membranes during biochemical phenomena, which may be associated with its pharmaceutical properties at the molecular level.
Collapse
Affiliation(s)
- João Victor N Ferreira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo , Diadema, SP, Brazil
| | - Tabata M Capello
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo , Diadema, SP, Brazil
| | - Leonardo J A Siqueira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo , Diadema, SP, Brazil
| | - João Henrique G Lago
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo , Diadema, SP, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo , Diadema, SP, Brazil
| |
Collapse
|
6
|
Broniatowski M, Flasiński M, Hąc-Wydro K. Antagonistic effects of α-tocopherol and ursolic acid on model bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2154-62. [PMID: 26003534 DOI: 10.1016/j.bbamem.2015.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022]
Abstract
α-tocopherol (Toc), the most active component of vitamin E can exert antagonistic effects disabling the therapy of cancers and bacterial infections. Such antagonisms were observed also between Toc and bioactive pentacyclic triterpenes (PT) exhibiting anticancer and antibacterial properties. Both Toc and PT are water-insoluble membrane active substances. Thus, our idea was to emulate their interactions with model Escherichia coli membranes. E. coli inner membranes were selected for the experiments because their lipid composition is quite simple and well characterized and the two main components are phosphatidylethanolamine and phosphatidylglycerol. As a model of E. coli membranes we applied Langmuir monolayers formed by the E. coli total extract of polar lipids (Etotal) as well as by the main lipid components: phosphatidylethanolamine (POPE) and phosphatidylglycerol (ECPG). The antagonistic effects of ursolic acid (Urs) and Toc were investigated with the application of ternary Langmuir monolayers formed by Urs, Toc and one of the phospholipids POPE or ECPG. Our studies indicated that the affinities of Urs and Toc towards the POPE molecule are comparable; whereas there are profound differences in the interactions of Urs and Toc with ECPG. Thus, the model experiments prove that in the case of E. coli membrane, the differences in the interactions between Urs and Toc with the anionic bacterial phosphatidylglycerol can be the key factor responsible for the antagonistic effects observed between PT and Toc in vivo.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland.
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Flasiński M, Wydro P, Broniatowski M, Hąc-Wydro K, Fontaine P. Crucial Role of the Double Bond Isomerism in the Steroid B-Ring on the Membrane Properties of Sterols. Grazing Incidence X-Ray Diffraction and Brewster Angle Microscopy Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7364-7373. [PMID: 26061794 DOI: 10.1021/acs.langmuir.5b00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three cholesterol precursors-desmosterol, zymosterol, and lanosterol-were comprehensively characterized in monolayers formed at the air/water interface. The studies were based on registration of the surface pressure (π)-area (A) isotherms complemented with in situ analysis performed with application of modern physicochemical techniques: grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy (BAM). In this approach we were interested in the correlation between molecular structures of the studied sterols found in the cholesterol biosynthetic pathway and their membrane properties. Our results revealed that only desmosterol behaves in Langmuir monolayers comparably to cholesterol, the molecules of which arrange in the monolayers into a hexagonal lattice, while the two remaining sterols possess extremely different properties. We found that molecules of both zymosterol and lanosterol are organized on the water surface in the two-dimensional oblique unit cells despite the fact that they are oriented perpendicular to the monolayer plane. The comparison of chemical structures of the investigated sterols leads to the conclusion that the only structural motive that can be responsible for such unusual behavior is the double bond in the B sterol ring, which is located in desmosterol in a different position from in the other two sterols. This issue, which was neglected in the scientific literature, seems to have crucial importance for sterol activity in biomembranes. We showed that this structural modification in sterol molecules is directly responsible for their adaptation to proper functioning in biomembranes.
Collapse
Affiliation(s)
- Michał Flasiński
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Paweł Wydro
- ‡Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Marcin Broniatowski
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Philippe Fontaine
- §Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
Habib L, Jraij A, Khreich N, Charcosset C, Greige-Gerges H. Effect of Erythrodiol, A Natural Pentacyclic Triterpene from Olive Oil, on the Lipid Membrane Properties. J Membr Biol 2015; 248:1079-87. [DOI: 10.1007/s00232-015-9821-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
9
|
Broniatowski M, Flasiński M, Wydro P, Fontaine P. Grazing incidence diffraction studies of the interactions between ursane-type antimicrobial triterpenes and bacterial anionic phospholipids. Colloids Surf B Biointerfaces 2015; 128:561-567. [PMID: 25805152 DOI: 10.1016/j.colsurfb.2015.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 01/11/2023]
Abstract
α-Amyrin (AMalf) and ursolic acid (Urs) are ursane-type pentacyclic triterpenes which exhibit wide spectrum of antibacterial activity. These surface active compounds can be incorporated into bacterial membranes and alter their structure and function; however, the exact mechanism of their action still needs to be elucidated. Thus, we decided to study the interactions of these terpenes with specific anionic phospholipids:cardiolipins and phosphatidylglycerols extracted from Escherichia coli in the model environment of Langmuir monolayers. To characterize the ordering of the terpene molecules in one-component films as well as to study their interactions with the bacterial phospholipids in binary monolayers we applied grazing incidence X-ray diffraction (GIXD). It turned out that amyrins and ursolic acid molecules form crystalline hexagonal phases in Langmuir monolayers, in which the molecules are oriented uprightly. Regarding the mixtures, it was found that in the monolayers with Urs crystalline domains are present till moderate or even low Urs proportion. In contrast, in the mixtures with AMalf crystalline domains were observed only at the highest terpene concentration. In the interpretation of our results we underlined the significance of the interactions between the cyclopropane ring present in the hydrophobic part of the bacterial phospholipids and the terminal ring of the terpene structure. We proposed that the significant differences between the systems with AMalf and Urs are connected with the formation of hydrogen bonds between the Urs hydrophobic moieties. It can be inferred from the results that Urs is a more membrane-active agent than AMalf.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland.
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
| |
Collapse
|
10
|
Broniatowski M, Mastalerz P, Flasiński M. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane-Langmuir monolayer approach. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:469-76. [PMID: 25450351 DOI: 10.1016/j.bbamem.2014.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/31/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Pentacyclic triterpenes (PT), ursolic acid (Urs), and α-amyrin (AMalf) are natural products exhibiting broad spectrum of antibacterial activity. These compounds are membrane-active and can disorder bacterial membranes when incorporated; however, the exact mechanism of their membrane activity is unknown. In our studies, we applied Langmuir monolayer technique supported by Brewster angle microscopy to model the interactions of the selected PT with the lipid matrix of E. coli inner membrane. As the model membrane, we applied mixtures (75/25 mole/.mole %) of the representative Escherichia coli phosphatidylethanolamine (POPE), with the cardiolipin (ECCL) or phosphatidylglycerol (ECPG) extracted from the E. coli inner membrane. On the basis of the recorded isotherms, we performed thermodynamic analysis and calculated free energy of mixing ΔGexc. It turned out that the phospholipids forming the inner membrane of E. coli are ideally miscible, whereas in binary systems composed of PT and POPE, negative deviations from ideality indicating attractive interactions between the investigated PT and POPE molecules were observed. On the other hand, in ternary systems composed of PT, POPE and one of the E. coli anionic phospholipids large positive changes in ΔGexc were observed. Thus, both PT exhibit disorganizing effect on the model E. coli membrane. It was also proved that at low terpene proportion, AMalf can be more active than Urs. However, at higher proportion Urs incorporation can lead to the disintegration of cardiolipin-rich domains present in bacterial membrane.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3,30-387 Kraków, Poland.
| | - Patrycja Mastalerz
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3,30-387 Kraków, Poland
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3,30-387 Kraków, Poland
| |
Collapse
|
11
|
Flasiński M, Hąc-Wydro K, Broniatowski M. Incorporation of pentacyclic triterpenes into mitochondrial membrane--studies on the interactions in model 2D lipid systems. J Phys Chem B 2014; 118:12927-37. [PMID: 25358079 DOI: 10.1021/jp508743j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Three representatives of naturally occurring pentacyclic triterpenes (PTs) were subjected to comprehensive studies aimed at the analysis of their interactions with phospholipids found naturally in mitochondrial membrane. To reach this goal, the selected compounds--α-amyrin (AMalf), betulinic acid (BAc), and ursolic acid (Urs)--were incorporated into two-component and multicomponent Langmuir monolayers acting as a model of mitochondrial membrane. As the lipids characteristic for mitochondria, phosphatidylcholine (POPC), phosphatidylethanolamine (POPE), and cardiolipin (BHCL) were chosen. Our studies were motivated by the fact that, according to the literature, the anticancer activity of PTs is correlated with their ability to incorporate into mitochondrial membrane and modify its properties. The undertaken studies were based on the surface pressure (π)-molecular area (A) isotherm registration complemented with the thermodynamic analysis and BAM visualization. It was found that all three terpenes with the exception of high betulinic acid proportion (30 and 50%) interact beneficially with POPC in two-component monolayers, while incorporation of BAc and Urs into POPE film is energetically unfavorable. As far as the model mitochondrial membrane composed of POPC/POPE/BHCL is concerned, the largest destructive influence (high positive values of ΔG(Exc) and decrease of the model monolayer condensation) was found in the case of terpene acids, while the effect of α-amyrin was energetically favorable. We postulated that the origin of the observed findings is connected with the specific interactions between bolaamphlilic terpene acids and POPE, known from its propensity to form intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387 Kraków, Poland
| | | | | |
Collapse
|
12
|
Broniatowski M, Flasiński M, Zięba K, Miśkowiec P. Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2530-8. [DOI: 10.1016/j.bbamem.2014.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/11/2023]
|
13
|
Broniatowski M, Flasiński M, Zięba K, Miśkowiec P. Langmuir monolayer studies of the interaction of monoamphiphilic pentacyclic triterpenes with anionic mitochondrial and bacterial membrane phospholipids — Searching for the most active terpene. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2460-72. [DOI: 10.1016/j.bbamem.2014.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/11/2023]
|
14
|
Stefaniu C, Brezesinski G. X-ray investigation of monolayers formed at the soft air/water interface. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Flasiński M, Wydro P, Broniatowski M. Lyso-phosphatidylcholines in Langmuir monolayers – Influence of chain length on physicochemical characteristics of single-chained lipids. J Colloid Interface Sci 2014; 418:20-30. [DOI: 10.1016/j.jcis.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 01/23/2023]
|
16
|
Interactions between single-chained ether phospholipids and sphingomyelin in mixed monolayers at the air/water interface—Grazing incidence X-ray diffraction and Brewster angle microscopy studies. Colloids Surf B Biointerfaces 2013; 111:43-51. [DOI: 10.1016/j.colsurfb.2013.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/12/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022]
|
17
|
Broniatowski M, Flasiński M, Wydro P. Investigation of the interactions of lupane type pentacyclic triterpenes with outer leaflet membrane phospholipids--Langmuir monolayer and synchrotron X-ray scattering study. J Colloid Interface Sci 2012; 381:116-24. [PMID: 22682981 DOI: 10.1016/j.jcis.2012.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/11/2023]
Abstract
Lupane type pentacyclic triterpenes (LTs) are pharmacologically active natural products isolated from different plants. They have broad spectrum of therapeutic action ranging from anticancer via anti-HIV, antibiotic to anti-inflammatory and anti-protozoal activity. Many scientific papers underline that the key stage in the LT mechanism of action is their incorporation into cellular membrane and the interaction with the structural lipids. In our research we apply Langmuir monolayers as a versatile platform for the investigation of these phenomena, since till now important aspects concerning this issue are incomprehensible. We focus our attention on the interactions of lupeol and betulinic acid with choline-headgroup structural lipids: a representative of saturated glycerophosphatidylcholines (DPPCs), and octadecyl-sphingomyelin--a representative of membrane sphingolipids. Application of complementary physicochemical techniques such as the Langmuir technique, Brewster angle microscopy, and grazing incidence X-ray diffraction supported by thermodynamic analysis enabled us to investigate the intermolecular interactions in such binary model systems. Our results corroborate that LT is miscible with the outer leaflet membrane phospholipids, both DPPC and SM in the whole range of mole ratios. Moreover, the introduction of LT into the phospholipid film, even in small proportion, leads to the loss of periodical ordering of the phospholipid molecules and the disappearance of the diffraction signal as observed by GIXD. Our results also proved that LT does not form any surface complexes of fixed stoichiometry resembling the well characterized lipid rafts.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków, Poland.
| | | | | |
Collapse
|