1
|
Misiura A, Dutta C, Leung W, Zepeda O J, Terlier T, Landes CF. The competing influence of surface roughness, hydrophobicity, and electrostatics on protein dynamics on a self-assembled monolayer. J Chem Phys 2022; 156:094707. [DOI: 10.1063/5.0078797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.
Collapse
Affiliation(s)
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Wesley Leung
- Applied Physics Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, USA
| | - Christy F. Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
2
|
Kumar N, Wondergem CS, Wain AJ, Weckhuysen BM. In Situ Nanoscale Investigation of Catalytic Reactions in the Liquid Phase Using Zirconia-Protected Tip-Enhanced Raman Spectroscopy Probes. J Phys Chem Lett 2019; 10:1669-1675. [PMID: 30916970 PMCID: PMC6477806 DOI: 10.1021/acs.jpclett.8b02496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a promising technique that enables nondestructive and label-free topographical and chemical imaging at the nanoscale. However, its scope for in situ characterization of catalytic reactions in the liquid phase has remained limited due to the lack of durable and chemically inert plasmonically active TERS probes. Herein, we present novel zirconia-protected TERS probes with 3 orders of magnitude increase in lifetime under ambient conditions compared to unprotected silver-coated probes, together with high stability in liquid media. Employing the plasmon-assisted oxidation of p-aminothiophenol as a model reaction, we demonstrate that the highly robust, durable, and chemically inert zirconia-protected TERS probes can be successfully used for nanoscale spatially resolved characterization of a photocatalytic reaction within an aqueous environment. The reported improved lifetime and stability of probes in a liquid environment extend the potential scope of TERS as a nanoanalytical tool not only to heterogeneous catalysis but also to a range of scientific disciplines in which dynamic solid-liquid interfaces play a defining role.
Collapse
Affiliation(s)
- Naresh Kumar
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- National
Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Caterina S. Wondergem
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Andrew J. Wain
- National
Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
3
|
Ntola CN, Kataky R. ‘Soft’ electroactive particles and their interaction with lipid membranes. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Monserud JH, Schwartz DK. Interfacial Molecular Searching Using Forager Dynamics. PHYSICAL REVIEW LETTERS 2016; 116:098303. [PMID: 26991206 DOI: 10.1103/physrevlett.116.098303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ∼10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.
Collapse
Affiliation(s)
- Jon H Monserud
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
5
|
Chin HY, Wang D, Schwartz DK. Dynamic Molecular Behavior on Thermoresponsive Polymer Brushes. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Huai-Ying Chin
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dapeng Wang
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Nelson N, Schwartz DK. Unbiased Clustering of Molecular Dynamics for Spatially Resolved Analysis of Chemically Heterogeneous Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6099-6106. [PMID: 26001158 DOI: 10.1021/acs.langmuir.5b01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A technique is described for resolving and interpreting molecular interactions with a chemically heterogeneous surface. Using total internal reflection fluorescence microscopy, dynamic single molecule trajectories were accumulated simultaneously for fluorescently labeled fatty acid (interacting primarily via hydrophobic interactions) and dextran (interacting via hydrogen-bonding interactions) probe molecules at the interface between an aqueous solvent and a photopatterned solid surface with distinct regions of amine-terminated and poly(ethylene glycol) self-assembled monolayers. Using dynamic properties of the probe molecules (adsorption rate, surface diffusion coefficient, residence time), an unsupervised Gaussian mixture model algorithm was used to identify areas of the surface that were chemically related to each other, and the dynamic behaviors of the probe molecules were studied statistically on these distinct regions. The dynamic data were compared to data from homogeneous surfaces of known chemistry to provide a chemical identification of each location on the surface. Spatial maps were also constructed, allowing for spatial visualization of surface chemistry on a hydrophilic substrate. This work enables the direct study of interactions between single-molecule probes and distinct surface chemistries, even in the presence of spatial heterogeneity, without human bias, assumptions about surface structure, or model-dependent analysis.
Collapse
Affiliation(s)
- Nathaniel Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Kastantin M, Langdon BB, Schwartz DK. A bottom-up approach to understanding protein layer formation at solid-liquid interfaces. Adv Colloid Interface Sci 2014; 207:240-52. [PMID: 24484895 PMCID: PMC4028386 DOI: 10.1016/j.cis.2013.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022]
Abstract
A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Blake B Langdon
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
8
|
Single molecule studies on dynamics in liquid crystals. Int J Mol Sci 2013; 14:19506-25. [PMID: 24077123 PMCID: PMC3821570 DOI: 10.3390/ijms141019506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/20/2023] Open
Abstract
Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.
Collapse
|
9
|
On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nat Chem 2013; 5:796-802. [DOI: 10.1038/nchem.1716] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022]
|
10
|
Fiore A, Venkateshwaran V, Garde S. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8017-8024. [PMID: 23687932 DOI: 10.1021/la401203r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
TMAO, a potent osmolyte, and TBA, a denaturant, have similar molecular architecture but somewhat different chemistry. We employ extensive molecular dynamics simulations to quantify their behavior at vapor-water and octane-water interfaces. We show that interfacial structure-density and orientation-and their dependence on solution concentration are markedly different for the two molecules. TMAO molecules are moderately surface active and adopt orientations with their N-O vector approximately parallel to the aqueous interface. That is, not all methyl groups of TMAO at the interface point away from the water phase. In contrast, TBA molecules act as molecular amphiphiles, are highly surface active, and, at low concentrations, adopt orientations with their methyl groups pointing away and the C-O vector pointing directly into water. The behavior of TMAO at aqueous interfaces is only weakly dependent on its solution concentration, whereas that of TBA depends strongly on concentration. We show that this concentration dependence arises from their different hydrogen bonding capabilities-TMAO can only accept hydrogen bonds from water, whereas TBA can accept (donate) hydrogen bonds from (to) water or other TBA molecules. The ability to self-associate, particularly visible in TBA molecules in the interfacial layer, allows them to sample a broad range of orientations at higher concentrations. In light of the role of TMAO and TBA in biomolecular stability, our results provide a reference with which to compare their behavior near biological interfaces. Also, given the ubiquity of aqueous interfaces in biology, chemistry, and technology, our results may be useful in the design of interfacially active small molecules with the aim to control their orientations and interactions.
Collapse
Affiliation(s)
- Andrew Fiore
- The Howard P. Isermann Department of Chemical and Biological Engineering and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
11
|
Kastantin M, Schwartz DK. Identifying multiple populations from single-molecule lifetime distributions. Chemphyschem 2012; 14:374-80. [PMID: 23255328 DOI: 10.1002/cphc.201200838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 12/14/2022]
Abstract
A major advantage of single-molecule methods over ensemble-averaging techniques involves the ability to characterize heterogeneity through the identification of multiple molecular populations. It can be challenging, however, to determine absolute values of dynamic parameters (and to relate these values to those determined from a conventional method) because characteristic timescales of various populations may vary over many orders of magnitude, and under a given set of experimental conditions instrumental sensitivity to various populations may be unequal. Using data obtained from the single-molecule tracking microscopy of fibrinogen protein adsorption and desorption, it is shown that by performing a combined analysis of molecular trajectories obtained using a range of acquisition times, it is possible to extract quantitative absolute values of multiple population fractions and residence times (with well-defined uncertainties), even when these values span many orders of magnitude. In particular, as many as six distinct populations are rigorously identified, exhibiting characteristic timescales that vary over nearly three orders of magnitude with population fractions as small as one part in a thousand. This approach will lead to better comparability between single-molecule experiments and may be useful in connecting single-molecule to ensemble-averaged observations.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 80309, USA
| | | |
Collapse
|