1
|
Gao L, Tian Y, Gao W, Xu G. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:4289. [PMID: 39001071 PMCID: PMC11244314 DOI: 10.3390/s24134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.
Collapse
Affiliation(s)
- Lili Gao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Ye Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Teekayupak K, Lomae A, Agir I, Chuaypen N, Dissayabutra T, Henry CS, Chailapakul O, Ozer T, Ruecha N. Large-scale fabrication of ion-selective electrodes for simultaneous detection of Na +, K +, and Ca 2+ in biofluids using a smartphone-based potentiometric sensing platform. Mikrochim Acta 2023; 190:237. [PMID: 37222781 DOI: 10.1007/s00604-023-05818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
A significant bottleneck exists for mass-production of ion-selective electrodes despite recent developments in manufacturing technologies. Here, we present a fully-automated system for large-scale production of ISEs. Three materials, including polyvinyl chloride, polyethylene terephthalate and polyimide, were used as substrates for fabricating ion-selective electrodes (ISEs) using stencil printing, screen-printing and laser engraving, respectively. We compared sensitivities of the ISEs to determine the best material for the fabrication process of the ISEs. The electrode surfaces were modified with various carbon nanomaterials including multi-walled carbon nanotubes, graphene, carbon black, and their mixed suspensions as the intermediate layer to enhance sensitivities of the electrodes. An automated 3D-printed robot was used for the drop-cast procedure during ISE fabrication to eliminate manual steps. The sensor array was optimized, and the detection limits were 10-5 M, 10-5 M and 10-4 M for detection of K+, Na+ and Ca2+ ions, respectively. The sensor array integrated with a portable wireless potentiometer was used to detect K+, Na+ and Ca2+ in real urine and simulated sweat samples and results obtained were in agreement with ICP-OES with good recoveries. The developed sensing platform offers low-cost detection of electrolytes for point-of-care applications.
Collapse
Affiliation(s)
- Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atchara Lomae
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ismail Agir
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Türkiye
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charles S Henry
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
- School of Biomedical Engineering, Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Tugba Ozer
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul , 34220, Türkiye.
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci 2023; 311:102810. [PMID: 36417827 DOI: 10.1016/j.cis.2022.102810] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Impelled by the need to find solutions to new challenges of modern technologies new materials with unique properties are being explored. Among various new materials that emerged over the decades, magnetic fluids exhibiting interesting physiochemical properties (optical, thermal, magnetic, rheological, apparent density, etc.) under a magnetic stimulus have been at the forefront of research. In the initial phase, there has been a fervent scientific curiosity to understand the field-induced intriguing properties of such fluids but later a plethora of technological applications emerged. Magnetic nanofluid, popularly known as ferrofluid, is a colloidal suspension of fine magnetic nanoparticles, has been at the forefront of research because of its magnetically tunable physicochemical properties and applications. Due to their stimuli-responsive behaviour, they have been finding more applications in biology and other engineering disciplines in recent years. Therefore, a critical review of this topic highlighting the necessary background, the potential of this material for emerging technologies, and the latest developments is warranted. This review also provides a summary of various applications, along with the key challenges and future research directions. The first part of the review addresses the different types of magnetic fluids, the genesis of magnetic fluids, their synthesis methodologies, properties, and stabilization techniques are discussed in detail. The second part of the review highlights the applications of magnetic nanofluids and nanoemulsions (as model systems) in probing order-disorder transitions, scattering, diffraction, magnetically reconfigurable internal structures, molecular interaction, and weak forces between colloidal particles, conformational changes of macromolecules at interfaces and polymer-surfactant complexation at the oil-water interface. The last part of the review summarizes the interesting applications of magnetic fluids such as heat transfer, sensors (temperature, pH, urea detection, cations, defect detection sensors), tunable optical filters, removal of dyes, dynamic seals, magnetic hyperthermia-based cancer therapy and other biomedical applications. The applications of magnetic nanofluids in diverse disciplines are growing day by day, yet there are challenges in their practical adaptation as field-worthy or packaged products. This review provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges and future directions.
Collapse
Affiliation(s)
- John Philip
- Smart Materials Section, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India.
| |
Collapse
|
4
|
Electrochemical response of solidification Cu 2+ contaminated soil influenced by red mud/fly ash ratio. Heliyon 2022; 8:e10971. [PMID: 36247125 PMCID: PMC9562447 DOI: 10.1016/j.heliyon.2022.e10971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The main purpose of this work was to study a new method for evaluating the solidification of contaminated soil based on electrochemical impedance spectroscopy (EIS). To explore how the EIS parameters were affected by the pore structure and mesostructure of the cured system, the physical and mechanical properties, leaching toxicity, microstructure, and EIS of the stabilized contaminated soil were tested after 7, 28, 60, and 90 days of curing. Based on the EIS results, a physical and equivalent circuit model of the stabilized contaminated soil's impedance response was established to reveal the mechanism of binder-heavy metal ion-soil interaction. The results showed that as the red mud (RM)-fly ash (FA) mass ratio and curing age increased, the strength and structural compactness of the solidified body also increased. The best curing effect was achieved with an RM-FA mass ratio of 7:3 after curing for 90 days. The equivalent circuit model of the solidified body obtained by EIS was Rs (Q1 (Rct1W) Q2Rct2). The pore solution resistance Rs, solid-liquid interface ion transfer resistance Rct 1, and unconfined compressive strength (UCS) qu all showed an increasing trend with increasing RM-FA mass ratio and increasing curing time. Fitting the model demonstrated that both Rs and Rct1 were closely correlated with the strength of the solidified bodies. These conclusions were further verified by scanning electron microscope (SEM) experiments. Overall, this work demonstrates that the strength characteristics of solidified bodies can be evaluated by EIS and reveals the microscopic mechanism of the solidification of Cu2+-contaminated soil.
Collapse
|
5
|
Abraham L, Thomas T, Pichumani M. Vivid structural colors of photonic crystals: self-assembly of monodisperse silica nano-colloids synthesized using an anionic surfactant. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Pandit S, Kundu S, Aswal VK. Effect of monovalent salts on molecular interactions of globular protein (BSA) above its isoelectric point. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Hu SQ, Ran SY. Single Molecular Chelation Dynamics Reveals That DNA Has a Stronger Affinity toward Lead(II) than Cadmium(II). J Phys Chem B 2022; 126:1876-1884. [PMID: 35196016 DOI: 10.1021/acs.jpcb.1c10487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lead ions can bind to DNA via nonelectrostatic interactions and hence alter its structure, which may be related to their adverse effects. The dynamics of Pb2+-DNA interaction has not been well understood. In this study, we report the monomolecular dynamics of the Pb2+-DNA interaction using a magnetic tweezers (MT) setup. We found that lead cations could induce DNA compaction at ionic strengths above 1 μM, which was also confirmed by morphology characterization. The chelation behavior of the Pb2+-DNA and the Cd2+-DNA complex solutions after adding EDTA were compared. The results showed that EDTA chelated with the bound metal ions on DNA and consequently led to restoring the DNA to its original length but with different restoration speeds for the two solutions. The fast binding dynamics and the slower chelation dynamics of the Pb2+ scenario compared to that of Cd2+ suggested that Pb2+ was more capable to induce DNA conformational change and that the Pb2+-DNA complex was more stable than the Cd2+-DNA complex. The stronger affinities for DNA bases and the inner binding of lead cations were two possible causes of the dynamics differences. Three agents, including EDTA, sodium gluconate, and SDBS, were used to remove the bound lead ions on DNA. It was shown that EDTA was the most efficient, and sodium gluconate could not fully restore DNA from its compact state. We concluded that both EDTA and SDBS were good candidates to restore the Pb2+-bound DNA to its original state.
Collapse
Affiliation(s)
- Shu-Qian Hu
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-Yong Ran
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Nandy M, Lahiri BB, Philip J. Inter-droplet force between magnetically polarizable Pickering oil-in-water nanoemulsions stabilized with γ-Al 2O 3 nanoparticles: Role of electrostatic and electric dipolar interactions. J Colloid Interface Sci 2021; 607:1671-1686. [PMID: 34592554 DOI: 10.1016/j.jcis.2021.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022]
Abstract
HYPOTHESIS The presence of nanoparticles at oil-water interface influences the interaction forces between Pickering emulsions. When charged nanoparticles are at the oil-water interface of an electrostatically stabilized emulsion, in addition to the screened Coulombic interaction, electric dipolar force also influences the total inter-droplet force profiles. An in-depth understanding of the effects of such electric dipolar forces is essential for designing colloidally stable Pickering nanoemulsions for various applications. EXPERIMENTS Inter-droplet forces between γ-Al2O3 nanoparticle stabilized oil-in-water nanoemulsion, containing superparamagnetic nanoparticles (magnetically polarizable) in the oil phase, are measured using the magnetic-chaining technique at different pH and salt concentrations. The role of mono-, di- and tri-valent salts on the inter-droplet force profiles are assessed. FINDINGS Force measurement studies reveal a lowering of inter-droplet spacing, within the linear chains, for higher salt concentrations due to an increased screening. Strong interfacial attachment of the charged nanoparticles results in the formation of an asymmetric charge cloud leading to an electric dipolar interaction. Incorporating the contributions of electric dipolar and screened Coulombic interactions, the theoretically estimated total repulsive force magnitudes are in good agreement with the experimental data. The obtained results offer better insights into the nature of colloidal force between charged particle stabilized nanoemulsions.
Collapse
Affiliation(s)
- Manali Nandy
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, HBNI, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - B B Lahiri
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, HBNI, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India.
| | - John Philip
- Smart Materials Section, Corrosion Science and Technology Division, Materials Characterization Group, Metallurgy and Materials Group, HBNI, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| |
Collapse
|
9
|
Poly acrylic acid stabilized magnetic nanoemulsions for visual defect detection: Effect of pH on detection sensitivity and colloidal stability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Muthukumaran T, Philip J. A facile approach to synthesis of cobalt ferrite nanoparticles with a uniform ultrathin layer of silicon carbide for organic dye removal. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Liu YF, Ran SY. Divalent metal ions and intermolecular interactions facilitate DNA network formation. Colloids Surf B Biointerfaces 2020; 194:111117. [PMID: 32512310 DOI: 10.1016/j.colsurfb.2020.111117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
The interactions between divalent metal ions and DNA are crucial for basic life processes. These interactions are also important in advanced technological products such as DNA-based ion sensors. Current polyelectrolyte theories cannot describe these interactions well and do not consider the corresponding dynamics. In this study, we report the single-molecule dynamics of the binding of divalent metal ions to a single DNA molecule and the morphology characterization of the complex. We found that most of the divalent metal ions (Mn2+, Zn2+, Co2+, Ni2+, and Cd2+), except Mg2+ and Ca2+, could cause monomolecular DNA condensation. For transition metal ions, different ionic strengths were required to induce the compaction, and different shortening speeds were displayed in the dynamics, indicating ionic specificity. Atomic force microscopy revealed that the morphologies of the metal ion-DNA complexes were affected by the ionic strength of the metal ion, DNA chain length, and DNA concentration. At low metal ion concentration, DNA tended to adopt a random coil conformation. Increasing the ionic strength led to network-like condensed structures, suggesting that divalent metal ions can induce attraction between DNA molecules. Furthermore, higher DNA concentration and longer chain length enhanced intermolecular interactions and consequently resulted in network structures with a higher degree of interconnectivity.
Collapse
Affiliation(s)
- Yin-Feng Liu
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-Yong Ran
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Pyrolysis of a flash nanoprecipitated tannic acid–metal@polymer assembly to create an electrochemically active metal@nanocarbon catalyst. Polym J 2020. [DOI: 10.1038/s41428-020-0305-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Mohapatra DK, Laskar JM, Philip J. Temporal evolution of equilibrium and non-equilibrium magnetic field driven microstructures in a magnetic fluid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Cheng LC, Hashemnejad SM, Zarket B, Muthukrishnan S, Doyle PS. Thermally and pH-responsive gelation of nanoemulsions stabilized by weak acid surfactants. J Colloid Interface Sci 2020; 563:229-240. [DOI: 10.1016/j.jcis.2019.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
|
15
|
Dong G, Lang K, Ouyang H, Zhang W, Bai L, Chen S, Zhang Z, Gao Y, Mu Z, Zhao X. Facile synthesis of N, P-doped carbon dots from maize starch via a solvothermal approach for the highly sensitive detection of Fe3+. RSC Adv 2020; 10:33483-33489. [PMID: 35515017 PMCID: PMC9056727 DOI: 10.1039/d0ra06209j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Nitrogen/phosphorus-doped carbon dots (N, P-CDs) with a quantum yield as high as 76.5% were synthesized by carbonizing maize starch via a facile ethanol solvothermal approach and utilized for the detection of Fe3+.
Collapse
|
16
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
17
|
Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.057] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Ribeiro CDL, Santos JGM, Souza JR, Paterno LG. Highly sensitive determination of salicylic acid in skin care product by means of carbon nanotube/iron oxide nanoparticle voltammetric sensors. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-018-04189-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Higashiguchi K, Morita N, Matsuda K. Structural Colored Balloon Composed of Temperature-Responsive Polymers Showing LCST Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12853-12860. [PMID: 30203977 DOI: 10.1021/acs.langmuir.8b02002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural colored balloons (SCBs) consisting of polymer thin film developed structural color by thin-layer interference on the shell. Thermoresponsive SCBs were prepared with poly(diethylene glycol monomethyl ether methacrylate)- co-poly( N-phenylacrylamide), which shows lower critical solution temperature (LCST) behavior. When cooling gelatin aqueous solution in which osmotic pressure was not operated, only hydration of the copolymer progressed due to LCST transition. The optical path length of the SCB increased due to swelling by water and subsequently decreased due to dissolution. The structural color changed according to the change in optical path length. In cold pure water, in addition to the hydration, osmotic pressure was operated to induce an influx of the outer solvent and the resulting diameter change also affected the shell thickness. The structural color change was analyzed to reveal that the dissolution of the polymer had significant effect on the developed structural color.
Collapse
Affiliation(s)
- Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Naoki Morita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| |
Collapse
|
20
|
Research Updates on Different Vitamins Based Nanoemulsions and Characterization of Nanoemulsions. AN INTRODUCTION TO FOOD GRADE NANOEMULSIONS 2018. [DOI: 10.1007/978-981-10-6986-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Fang CH, Tsai PI, Huang SW, Sun JS, Chang JZC, Shen HH, Chen SY, Lin FH, Hsu LT, Chen YC. Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis. BMC Infect Dis 2017; 17:516. [PMID: 28743235 PMCID: PMC5526269 DOI: 10.1186/s12879-017-2621-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND When bacteria colony persist within a biofilm, suitable drugs are not yet available for the eradication of biofilm-producing bacteria. The aim of this study is to study the effect of magnetic nano-particles-induced hyperthermia on destroying biofilm and promoting bactericidal effects of antibiotics in the treatment of osteomyelitis. METHODS Sixty 12-weeks-old male Wistar rats were used. A metallic 18G needle was implanted into the bone marrow cavity of distal femur after the injection of Methicillin-sensitive Staphylococcus aureus (MSSA). All animals were divided into 5 different treatment modalities. The microbiological evaluation, scanning electron microscope examination, radiographic examination and then micro-CT evaluation of peri-implant bone resorption were analyzed. RESULTS The pathomorphological characteristics of biofilm formation were completed after 40-days induction of osteomyelitis. The inserted implants can be heated upto 75 °C by magnetic heating without any significant thermal damage on the surrounding tissue. We also demonstrated that systemic administration of vancomycin [VC (i.m.)] could not eradicate the bacteria; but, local administration of vancomycin into the femoral canal and the presence of magnetic nanoparticles hyperthermia did enhance the eradication of bacteria in a biofilm-based colony. In these two groups, the percent bone volume (BV/TV: %) was significantly higher than that of the positive control. CONCLUSIONS For the treatment of chronic osteomyelitis, we developed a new modality to improve antibiotic efficacy; the protection effect of biofilms on bacteria could be destroyed by magnetic nanoparticles-induced hyperthermia and therapeutic effect of systemic antibiotics could be enhanced.
Collapse
Affiliation(s)
- Chih-Hsiang Fang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-I Tsai
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, 30010, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040, Taiwan
| | - Shu-Wei Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, College of Medicine, National Taiwan University, No. 1, Ren-Ai Rd, Taipei, 10051, Taiwan, Republic of China. .,Department of Orthopedic Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Rd, Taipei, 10002, Taiwan, Republic of China. .,Biomimetic Systems Research Center, National Chiao-Tung University, 1001 University Road, Hsinchu, 300, Taiwan, Republic of China.
| | - Jenny Zwei-Chieng Chang
- School of Dentistry, College of Medicine, National Taiwan University, No 1 Chang-Te Street, Taipei, 10048, Taiwan.
| | - Hsin-Hsin Shen
- Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County, 310, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, 30010, Taiwan
| | - Feng Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Tao Hsu
- Industrial Technology Research Institute, Rm. 635, Bldg. 53, No. 195, Sec. 4, Chung Hsing Rd, Chutung, Hsinchu, Taiwan
| | - Yen-Chun Chen
- Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County, 310, Taiwan
| |
Collapse
|
22
|
Rodríguez-Burneo N, Busquets MA, Estelrich J. Magnetic Nanoemulsions: Comparison between Nanoemulsions Formed by Ultrasonication and by Spontaneous Emulsification. NANOMATERIALS 2017; 7:nano7070190. [PMID: 28737673 PMCID: PMC5535256 DOI: 10.3390/nano7070190] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
Nanoemulsions are particularly suitable as a platform in the development of delivery systems. The type of nanoemulsion with a higher stability will offer an advantage in the preparation of a delivery system for lipophilic drugs. Nanoemulsions can be fabricated by different processing methods, which are usually categorized as either high- or low-energy methods. In this study, a comparison between two methods of preparing magnetic oil-in-water (O/W) nanoemulsions is described. The nanoemulsions were formed by sonication (the high-energy method) or by spontaneous emulsification (the low-energy method). In both cases, the oil phase was olive oil, and a phospholipid and a pegylated phospholipid were used as emulsifiers. To favor the comparison, the amounts of the components were the same in both kinds of nanoemulsions. Moreover, nanoemulsions were loaded with hydrophobic superparamagnetic nanoparticles and indomethacin. In vitro, releases studies indicated a short drug burst period followed by a prolonged phase of dissolutive drug release. The Korsmeyer-Peppas model can fit the associated kinetics. The results showed that such nanoemulsions are suitable as a platform in the development of delivering systems for lipophilic drugs. The long-term stability was also examined at different temperatures, as well as the interaction with plasma proteins. Nanoemulsion obtained by the low-energy method showed a great stability at 4 °C and at ambient temperature. Its size and polydispersity did not change over more than two months. The spontaneous emulsification method therefore has great potential for forming nanoemulsion-based delivery systems.
Collapse
Affiliation(s)
- Nathalia Rodríguez-Burneo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Maria Antònia Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Joan Estelrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), Avda. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
23
|
Oil-in-water nanoemulsions are suitable for carrying hydrophobic compounds: Indomethacin as a model of anti-inflammatory drug. Int J Pharm 2016; 515:749-756. [PMID: 27825866 DOI: 10.1016/j.ijpharm.2016.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/25/2023]
|
24
|
Helgeson ME. Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Ma J, Shi F, Tian D, Li H. Macroscopic Responsive Liquid Quantum Dots Constructed via Pillar[5]arene-Based Host-Guest Interactions. Chemistry 2016; 22:13805-13809. [DOI: 10.1002/chem.201602635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Junkai Ma
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Fangdan Shi
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P.R. China
| |
Collapse
|
26
|
Wei TB, Chen JF, Cheng XB, Li H, Lin Q, Yao H, Zhang YM. A novel functionalized pillar[5]arene for forming a fluorescent switch and a molecular keypad. RSC Adv 2016. [DOI: 10.1039/c6ra14899a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensing mechanism of the sensor PC5 to Fe3+.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
27
|
He Y, Li M, Jiang W, Yang W, Lin L, Xu L, Fu F. Phosphatidylserine-functionalized Fe3O4@SiO2 nanoparticles combined with enzyme-encapsulated liposomes for the visual detection of Cu2+. J Mater Chem B 2016; 4:752-759. [DOI: 10.1039/c5tb01926e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported on novel phosphatidylserine-functionalized Fe3O4@SiO2 NPs and enzyme-encapsulated liposomes for the visual detection of Cu2+ by employing phosphatidylserine for Cu2+ recognition and the enzymatic catalysis/oxidation of TMB as a signal generator.
Collapse
Affiliation(s)
- Ye He
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Mengxue Li
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Wenjing Jiang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - WeiJuan Yang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Ling Lin
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - LiangJun Xu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - FengFu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
28
|
Zhang H, Zeng X, Chen D, Guo Y, Jiang W, Xu L, Fu F. Coupling a novel spiro-rhodamine B lactam derivative to Fe3O4 nanoparticles for visual detection of free copper ions with high sensitivity and specificity. RSC Adv 2015. [DOI: 10.1039/c5ra04272k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel spiro-rhodamine B lactam derivative, which can be coupled to Fe3O4 NPs and act as a Cu2+-selective visual sensor is reported. It can be used to directly detect as little as 50 nM of Cu2+ in river or tap water by only naked-eye observation.
Collapse
Affiliation(s)
- Hongyan Zhang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Xiaoxue Zeng
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Danlong Chen
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Ying Guo
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Wenjing Jiang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Liangjun Xu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - FengFu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
29
|
Shi F, Zhou J, Zhang L, Huang Y, Tian D, Deng H, Li H. Cu2+ ion responsive solvent-free quantum dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3901-3906. [PMID: 24861520 DOI: 10.1002/smll.201400567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Three quantum dots (QDs) nanofluids modified with different lengths of PEG chainsare synthesized, and the property-structure relationship of QDs nanofluids is established, to achieve QDs nanofluids with tunable fluidic or optical performance. Notably, the proposed QDs nanofluids demonstrate a selective response towards Cu(2+)-based on both fluorescence and contact angle.
Collapse
Affiliation(s)
- Fangdan Shi
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | | | | | | | | | | | | |
Collapse
|
30
|
Lim J, Yeap SP, Leow CH, Toh PY, Low SC. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J Colloid Interface Sci 2014; 421:170-7. [DOI: 10.1016/j.jcis.2014.01.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/16/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|