1
|
Lazarus R, Kothari R, Venuganti VVK, Nag A. Intracellular Temperature Sensing with Remarkably High Relative Sensitivity Using Nile Red-Loaded Biocompatible Niosome. ACS APPLIED BIO MATERIALS 2025; 8:3028-3039. [PMID: 40130319 DOI: 10.1021/acsabm.4c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Accurate temperature sensing at the nanoscale within biological systems is crucial for understanding various cellular processes, such as gene expression, metabolism, and enzymatic reactions. Current temperature-sensing techniques either lack the temperature resolution and sensitivity necessary for intracellular applications or require invasive procedures that can disrupt cellular activities. In this study, we present Nile Red (NR)-loaded hybrid (span 60-L64) niosomes and Nile Red-loaded L64 niosomes as highly sensitive fluorescent nanothermometers. These niosomes are synthesized via the thin-layer evaporation method, forming thermoresponsive vesicles, and they demonstrate reversible phase transition behavior with temperature. When loaded with polarity-sensitive Nile Red, vesicles exhibit a strong temperature-dependent fluorescence response (change in intensity, emission maximum, and lifetime), suitable for noncontact temperature sensing in the biologically important temperature range of 25 to 50 °C. While NR-hybrid niosomes exhibit a high relative sensitivity of 19% °C-1 at 42 °C, NR-L64 niosomes achieved extraordinary relative sensitivity of 36% °C-1 at 40 °C. Using NR-L64 niosomes, the temperature resolution is found to be 0.0004 °C at 40 °C. The nanothermometers displayed excellent photostability, thermal reversibility, and resistance to variations in ion concentration and pH. Temperature-dependent confocal microscopy using FaDu cells confirmed the biocompatibility and effectiveness of the designed nanothermometers for precise intracellular temperature sensing. The results demonstrate the significant potential of Nile Red-loaded niosomes for temperature monitoring using live cell imaging in biological media.
Collapse
Affiliation(s)
- Ronak Lazarus
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Rupal Kothari
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | | | - Amit Nag
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
2
|
Meikle TG, Keizer DW, Separovic F, Yao S. Insights into dynamic properties of water in lipidic cubic phases by 2D nuclear Overhauser effect (NOE) NMR spectroscopy. J Colloid Interface Sci 2024; 666:659-669. [PMID: 38616448 DOI: 10.1016/j.jcis.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Two-dimensional NOE (nuclear Overhauser effect) NMR spectroscopy was employed to investigate the dynamic properties of water within lyotropic bicontinuous lipidic cubic phases (LCPs) formed by monoolein (MO). Experiments observed categorically different effective residence times of water molecules: (i) in proximity to the glycerol moiety of MO, and (ii) adjacent to the hydrophobic chain towards the hydrocarbon tail of MO, as evidenced by the opposite signs of intermolecular NOE cross peaks between protons of water and those of MO in 2D 1H-1H NOESY spectra. Spectroscopic data delineating the different effective residence times of water molecules within both the gyroid (QIIG) and diamond (QIID) phase groups corresponding to hydration levels of 35 and 40 wt%, respectively, are presented. Additionally, an increase in effective residence time of water molecules in proximity to the glycerol moiety of MO in LCPs was observed upon storage at ambient temperature and in the presence of an additive lipid, cholesterol. Atom-specific NOE build-up curves for protons of water and those of MO are also given. The results presented herein provide new insight into the physicochemical properties and behaviour of water in LCPs, and demonstrate an additional avenue for experimental study of water-lipid interactions and hydration dynamics in model membranes and nanomaterials using 2D NOE NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia; School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Orlikowska-Rzeznik H, Versluis J, Bakker HJ, Piatkowski L. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes. J Am Chem Soc 2024; 146:13151-13162. [PMID: 38687869 PMCID: PMC11099968 DOI: 10.1021/jacs.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.
Collapse
Affiliation(s)
- Hanna Orlikowska-Rzeznik
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jan Versluis
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Lukasz Piatkowski
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Brasnett C, Squires AM, Smith AJ, Seddon AM. Lipid doping of the sponge (L 3) mesophase. SOFT MATTER 2023; 19:6569-6577. [PMID: 37603381 DOI: 10.1039/d3sm00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.
Collapse
Affiliation(s)
| | - Adam M Squires
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Ave., Didcot, OX11 0DE, UK
| | - Annela M Seddon
- School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK.
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
5
|
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains. Biophys J 2023:S0006-3495(23)00135-2. [PMID: 36869591 DOI: 10.1016/j.bpj.2023.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Sphingolipids are a structurally diverse class of lipids predominantly found in the plasma membrane of eukaryotic cells. These lipids can laterally segregate with other rigid lipids and cholesterol into liquid-ordered domains that act as organizing centers within biomembranes. Owing the vital role of sphingolipids for lipid segregation, controlling their lateral organization is of utmost significance. Hence, we made use of the light-induced trans-cis isomerization of azobenzene-modified acyl chains to develop a set of photoswitchable sphingolipids with different headgroups (hydroxyl, galactosyl, phosphocholine) and backbones (sphingosine, phytosphingosine, tetrahydropyran-blocked sphingosine) that are able to shuttle between liquid-ordered and liquid-disordered regions of model membranes upon irradiation with UV-A (λ = 365 nm) and blue (λ = 470 nm) light, respectively. Using combined high-speed atomic force microscopy, fluorescence microscopy, and force spectroscopy, we investigated how these active sphingolipids laterally remodel supported bilayers upon photoisomerization, notably in terms of domain area changes, height mismatch, line tension, and membrane piercing. Hereby, we show that the sphingosine-based (Azo-β-Gal-Cer, Azo-SM, Azo-Cer) and phytosphingosine-based (Azo-α-Gal-PhCer, Azo-PhCer) photoswitchable lipids promote a reduction in liquid-ordered microdomain area when in the UV-adapted cis-isoform. In contrast, azo-sphingolipids having tetrahydropyran groups that block H-bonding at the sphingosine backbone (lipids named Azo-THP-SM, Azo-THP-Cer) induce an increase in the liquid-ordered domain area when in cis, accompanied by a major rise in height mismatch and line tension. These changes were fully reversible upon blue light-triggered isomerization of the various lipids back to trans, pinpointing the role of interfacial interactions for the formation of stable liquid-ordered domains.
Collapse
|
6
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Gater DL, Hughes K, Stojanoff V, Isakovic AF. Phase Heterogeneity in Cholesterol-Containing Ternary Phospholipid Lamellar Phases. ACS OMEGA 2023; 8:6225-6233. [PMID: 36844553 PMCID: PMC9947962 DOI: 10.1021/acsomega.2c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Pseudo-ternary mixtures of lamellar phase phospholipids (DPPC and brain sphingomyelin with cholesterol) were studied below T m while comparing the influence of cholesterol content, temperature, and the presence of small quantities of vitamin D binding protein (DBP) or vitamin D receptor (VDR). The measurements, conducted by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR), cover a range of cholesterol concentrations (20% mol. wt to 40% mol. wt.) and physiologically relevant temperature range (294-314 K). In addition to rich intraphase behavior, data and modeling are used to approximate the lipids' headgroup location variations under the abovementioned experimental conditions.
Collapse
Affiliation(s)
| | - Keontré
I. Hughes
- Colgate
University, Hamilton, New York 13346-1338, United States
- Michigan
State University, East Lansing, Michigan 48824-1312, United States
| | - Vivian Stojanoff
- Brookhaven
National Laboratory, Upton, New York 11973-5000, United States
| | | |
Collapse
|
8
|
Meikle TG, Keizer DW, Separovic F, Yao S. A solution NMR view of Lipidic Cubic Phases: Structure, dynamics, and beyond. BBA ADVANCES 2022; 2:100062. [PMID: 37082598 PMCID: PMC10074910 DOI: 10.1016/j.bbadva.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is well-established nowadays for the elucidation of the 3D structures of proteins and protein complexes, the evaluation of biomolecular dynamics with atomistic resolution across a range of time scales, the screening of drug candidates with site specificity, and for the quantitation of molecular translational diffusion. Lyotropic lipidic cubic phases (LCPs) are lipid bilayer-based materials with a complex geometry, formed via the spontaneous self-assembly of certain lipids in an aqueous environment at specific temperature ranges. LCPs have been successfully applied to the in meso crystallization of membrane proteins for structural studies by X-ray crystallography, and have also shown promising potential for serving as matrices for drug and nutrient delivery/release in vivo. The characterization of the structural and dynamics properties of LCPs is of significant interest for the application of these materials. Here we present a systematic review detailing the characterization of LCPs by solution NMR. Using LCPs formed by monoolein (MO) as an example, various aspects of LCPs readily accessible by solution NMR are covered, including spectral perturbation in the presence of additives, quantification of hydration levels, 13C relaxation-based measurements for studying atom-specific dynamics along the MO hydrocarbon chain, PGSE NMR measurement of translational diffusion and its correlation with release profiles, and the encapsulation of soluble proteins in LCPs. A brief discussion of future perspectives for the characterization of LCPs by solution NMR is also presented.
Collapse
|
9
|
Elzenaty O, Luciani P, Aleandri S. A lipidic mesophase with tunable release properties for the local delivery of macromolecules: the apoferritin nanocage, a case study. J Mater Chem B 2022; 10:3876-3885. [PMID: 35470843 DOI: 10.1039/d2tb00403h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid mesophases are able to incorporate and release a plethora of molecules, spanning from hydrophobic drugs to small hydrophilic proteins and therefore they have been widely used as drug delivery systems. However, their 3-5 nm water channels do not allow the release of large hydrophilic molecules such as monoclonal antibodies and therapeutic proteins. To overcome this major geometrical constraint, we designed a gel by mixing monoacylglycerol lipids, generally recognized as safe for human and/or animal use by FDA, and phospholipids, to obtain a material with swollen water channels suitable to host and further release macromolecules. Apoferritin, a 12 nm nanocage protein with intrinsic tumor-targeting properties able to incorporate several molecules, was selected here as the hydrophilic model protein to be embedded in the biocompatible gel. When immersed completely in the release media, mesophases with a swollen water channel of 22 nm, composed of monoolein and doped with 5 mole% of DOPS and 10 mole% of Chol allowed us to achieve a protein release of 60%, which is 120 times higher with respect to that obtained by employing non swollen-LMPs composed only of monoolein. Thus, the formulation can be administered locally to the rectal or vaginal mucosa, reducing the drawbacks often associated with the parenteral administration of bio-therapeutics. This approach would pave the way for the local application of other biomacromolecules (including human ferritin, monoclonal antibodies and antibody drug-conjugates) in those diseases easily reachable by a local application such as rectal or vaginal cancer.
Collapse
Affiliation(s)
- Oumar Elzenaty
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Stability of cubic phase and curvature tuning in the lyotropic system of branched chain galactose-based glycolipid by amphiphilic additives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Rowlands LJ, Marks A, Sanderson JM, Law RV. 17O NMR spectroscopy as a tool to study hydrogen bonding of cholesterol in lipid bilayers. Chem Commun (Camb) 2021; 56:14499-14502. [PMID: 33150883 DOI: 10.1039/d0cc05466f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol is a crucial component of biological membranes and can interact with other membrane components through hydrogen bonding. NMR spectroscopy has been used previously to investigate this bonding, however this study represents the first 17O NMR spectroscopy study of isotopically enriched cholesterol. We demonstrate the 17O chemical shift is dependent on hydrogen bonding, providing a novel method for the study of cholesterol in bilayers.
Collapse
Affiliation(s)
- Lucy J Rowlands
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | | | | | | |
Collapse
|
12
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. J Phys Chem B 2021; 125:571-580. [PMID: 33251799 DOI: 10.1021/acs.jpcb.0c08699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proton transportation in proximity to the lipid bilayer membrane surface, where chemical exchange represents a primary pathway, is of significant interest in many applications including cellular energy turnover underlying ATP synthesis, transmembrane mobility, and transport. Lipidic inverse bicontinuous cubic phases (LCPs) are unique membrane structures formed via the spontaneous self-assembly of certain lipids in an aqueous environment. They feature two networks of water channels, separated by a single lipid bilayer which approximates the geometry of a triply periodic minimal surface. When composed of monoolein, the LCP bilayer features two glycerol hydroxyl groups at the lipid-water interface which undergo exchange with water. Depending on the conditions of the aqueous solution used in the formation of LCPs, both resonances of the glycerol hydroxyl groups may be observed by solution 1H NMR. In this study, PFG-NMR and 1D EXSY were employed to gain insight into chemical exchange between the monoolein hydroxyl groups and water in LCPs. Results including the relative population of hydroxyl protons in exchange with water for a number of LCPs at different hydration levels and the exchange rate constants at 35 wt % hydration are reported. Several technical aspects of PFG-NMR and EXSY-NMR for the characterization of chemical exchange in LCPs are discussed, including an alternative way to analyze PFG-NMR data of exchange systems which overcomes the inherent low sensitivity at high diffusion encoding.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.,School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
13
|
Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm 2021; 592:120036. [DOI: 10.1016/j.ijpharm.2020.120036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
|
14
|
Bin Sintang MD, Danthine S, Khalenkow D, Tavernier I, Tzompa Sosa DA, Julmohammad NB, Van de Walle D, Rimaux T, Skirtach A, Dewettinck K. Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chem Phys Lipids 2020; 230:104912. [DOI: 10.1016/j.chemphyslip.2020.104912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
|
15
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6254-6260. [PMID: 32418433 DOI: 10.1021/acs.langmuir.0c00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic inverse bicontinuous cubic phases (LCPs), formed via the spontaneous self-assembly of lipids such as monoolein, have found increasing applications in the stabilization and crystallization of integral membrane proteins for structural characterization using X-ray crystallography. Their use as effective drug release matrices has also been demonstrated. Nuclear magnetic resonance (NMR) spectroscopy, both solution and solid state, has previously been employed for the characterization of LCPs and related systems. Herein, we report a number of novel features of solution NMR for probing the fundamental composition and structural properties of monoolein-based LCPs. These include (1) more complete assignments of both 1H and 13C chemical shifts, (2) direct quantification of hydration level in LCPs using one-dimensional (1D) 1H NMR, and (3) monitoring longer-term stability of LCPs and evaluating alterations introduced into standard LCPs at the submolecular level.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
- School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
16
|
Understanding the assembly of amphiphilic additives in bulk and dispersed non-lamellar lipid-based matrices: Phosphorylation, H-bonding and ionisation. J Colloid Interface Sci 2020; 562:502-510. [DOI: 10.1016/j.jcis.2019.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022]
|
17
|
Wu D, Carillo KJD, Tsai S, Shie J, Tzou DM. Solid‐state nuclear magnetic resonance investigation of neurosteroid compounds and magnesium interactions. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danni Wu
- Chemical Engineering Department, National Taiwan University of Science and Technology Taipei Taiwan
| | - Kathleen Joyce D. Carillo
- Taiwan International Graduate Program of Sustainable Chemical Science and Technology Taipei Taiwan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
- Institute of ChemistryAcademia Sinica, Nankang Taipei Taiwan
| | - Shen‐Long Tsai
- Chemical Engineering Department, National Taiwan University of Science and Technology Taipei Taiwan
| | - Jiun‐Jie Shie
- Taiwan International Graduate Program of Sustainable Chemical Science and Technology Taipei Taiwan
- Institute of ChemistryAcademia Sinica, Nankang Taipei Taiwan
| | - Der‐Lii M. Tzou
- Institute of ChemistryAcademia Sinica, Nankang Taipei Taiwan
- Department of Applied ChemistryNational Chia‐Yi University Chia‐Yi Taiwan
| |
Collapse
|
18
|
Truong T, Prakash S, Bhandari B. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels. Food Chem 2019; 285:86-93. [PMID: 30797379 DOI: 10.1016/j.foodchem.2019.01.134] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 11/24/2022]
Abstract
Different formulations and crystallising conditions were employed to vary the bulk phase structuring of oleogels. The oleogels were formed only at monoacylglycerol:native phytosterol (MAG:NPS) ratios of 10:0, 7:3 and 5:5. NPS co-crystallised with MAG in the oleogel mixtures and influenced the growth of lipidic crystal network. Faster cooling rates caused smaller crystals whereas thermal history affected the rigidity of oleogel samples. The oleogel samples were whipped and characterised for whipping time, foam overrun, microstructure, rheology and half-life of foam. The whipped oleogels were structured by layer(s) of lipidic crystals surrounding the air bubbles, which had non-spherical shapes and rough textures. The whipping time was remarkably reduced by 80% in the oleogel samples containing smaller lipidic crystals. All whippable oleogel samples had similar foam overrun values and extremely stable against foam collapse. The obtained oil foams exhibited liquid-like behaviour at low frequency as measured by the frequency sweep test.
Collapse
Affiliation(s)
- Tuyen Truong
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
19
|
Speziale C, Ghanbari R, Mezzenga R. Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5052-5059. [PMID: 29648837 DOI: 10.1021/acs.langmuir.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rheological studies of liquid crystalline systems based on monopalmitolein and 5 or 8% of 1,2 distearoylphosphatidylglycerol are reported. Such cubic phases have been shown to possess unusually large water channels because of their ability of accommodating up to 80 wt % of water, a feature that renders these systems suitable for crystallizing membrane proteins with large extracellular domains. Their mechanical properties are supposed to be substantially different from those of traditional cubic phases. Rheological measurements were carried out on cubic phases of both Pn3 m and Ia3 d symmetries. It was verified that these ultraswollen cubic phases are less rigid than the normal cubic phases, with the Pn3 m being softer that the Ia3 d ones. Furthermore, for the Pn3 m case, the longest relaxation time is shown to decrease logarithmically with increasing surface area per unit volume, proving the critical role of the density of interfaces in establishing the macroscopic viscoelastic properties of the bicontinuous cubic phases.
Collapse
Affiliation(s)
- Chiara Speziale
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
| | - Reza Ghanbari
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
| | - Raffaele Mezzenga
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
- Department of Materials , ETH Zürich , Wolfgang-Pauli-Strasse 10 , CH-8093 Zurich , Switzerland
| |
Collapse
|
20
|
van 't Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 2018; 46:2705-2731. [PMID: 28280815 DOI: 10.1039/c6cs00663a] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
21
|
Lopez M, Denver J, Evangelista SE, Armetta A, Di Domizio G, Lee S. Effects of Acyl Chain Unsaturation on Activation Energy of Water Permeability across Droplet Bilayers of Homologous Monoglycerides: Role of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2147-2157. [PMID: 29323917 DOI: 10.1021/acs.langmuir.7b03590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cholesterol is an important component of total lipid in mammalian cellular membranes; hence, the knowledge of its association with lipid bilayer membranes will be essential to understanding membrane structure and function. A droplet interface bilayer (DIB) provides a convenient and reliable platform through which values for permeability coefficient and activation energy of water transport across the membrane can be extracted. In this study, we investigated the effect of acyl chain structure in amphiphilic monoglycerides on the permeability of water across DIB membranes composed of cholesterol and these monoglycerides, where the acyl chain length, number of double bonds, and the position of double bond are varied systematically along the acyl chains. To elucidate the role of cholesterol in these membranes, we investigated its influence on water permeability and associated activation energies at two different cholesterol concentrations. Our systematic studies show dramatic sensitivity and selectivity of specific interaction of cholesterol with the monoglyceride bilayer having structural variations in acyl chain compositions. Our findings allow us to delineate the exquisite interplay between membrane properties and structural components and understand the balanced contribution of each.
Collapse
Affiliation(s)
- Maria Lopez
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jacqueline Denver
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sue Ellen Evangelista
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alessandra Armetta
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Gabriella Di Domizio
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
22
|
Abstract
Lipids self-assemble into diverse supramolecular structures that exhibit thermotropic and/or lyotropic behavior. Lyotropic mesophases, where membranes conform to periodic minimal surfaces dividing two nonpenetrating aqueous subspaces, are arguably one of the most intriguing phases of lipid materials. Traditional 3D bicontinuous cubic lipid materials appear as a polycrystal of varying degrees of order. When exposed to water, the properties of the molecular building blocks of the membrane determine specific swelling limits setting the lattice dimensions at about 15 nm. This limited swelling severely impairs their application as delivery vehicles of large drugs or as matrices for guiding protein crystallization. We report the discovery of self-assembly strategies leading to the emergence of lipid bicontinuous single crystals with unprecedented swelling capacity. The conventional strategy to increase unit cell size is tweaking membrane composition to include charged building blocks, a process to achieve electrostatic-driven swelling. In this paper, we demonstrate that controlling self-assembly external conditions when coupled to membrane composition yields 3D bicontinuous cubic phases that swell up to lattice dimensions of 68 nm. Importantly, and contrary to what is perceived for soft lyotropic materials in general, the self-assembly methodology enables the development of large super-swelled monocrystals. Utilizing small-angle X-ray scattering and cryoelectron microscopy, we underpin three crucial factors dictating the stabilization of super-swelled lipid bicontinuous cubic single crystals: (i) organic solvent drying speed, (ii) membrane charge density, and (iii) polyethylene glycol-conjugated lipids amount.
Collapse
|
23
|
Brasnett C, Longstaff G, Compton L, Seddon A. Effects of Cations on the Behaviour of Lipid Cubic Phases. Sci Rep 2017; 7:8229. [PMID: 28811541 PMCID: PMC5557815 DOI: 10.1038/s41598-017-08438-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/11/2017] [Indexed: 01/12/2023] Open
Abstract
Inverse bicontinuous cubic structures formed by lipids have been demonstrated in a wide variety of applications, from a host matrix for proteins for crystallisation, to templates for nanoscale structures. Recent work has focused on tuning their properties to realize such applications, often by manipulating the structure by introducing other lipids with different properties such as charge or packing. However, they are often prepared in the presence of solutions containing salt, counteracting the effects, for example, charged lipids, and fundamentally changing the structures obtained. Here, we demonstrate the delicate interplay between electrostatic swelling in bicontinuous structures formed by monoolein (MO) doped with both negatively charged dioleyl phosphatidylglycerol (DOPG), and zwitterionic dioleyl phosphatidylethanolamine (DOPE), with the addition of mono- and divalent salts. The effect of adding salt to the charged phase changes the structure from the primitive cubic (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{Q}}}_{II}^{P}$$\end{document}QIIP) to the double diamond phase (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{Q}}}_{II}^{D}$$\end{document}QIID) whilst still allowing for modest increases in lattice parameter of up to a nanometer. Contrasting this, the addition of salts to the non-charged phase, has minimal effect on the lattice parameter but now the transition from the (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{Q}}}_{II}^{D}$$\end{document}QIID) to the inverse hexagonal phase (HII) is observed occurring at higher mole fractions of DOPE than in pure water.
Collapse
Affiliation(s)
- Christopher Brasnett
- H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| | - Georgia Longstaff
- H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| | - Laura Compton
- H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| | - Annela Seddon
- H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK. .,Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK.
| |
Collapse
|
24
|
Bin Sintang MD, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, Rimaux T, Dewettinck K. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res Int 2017; 100:832-840. [PMID: 28873756 DOI: 10.1016/j.foodres.2017.07.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022]
Abstract
Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.
Collapse
Affiliation(s)
- Mohd Dona Bin Sintang
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium; Department of Food Technology and Bioprocess, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Malaysia.
| | - Sabine Danthine
- Department of Food Science and Formulation, Universite de Liege, Passage des Deportes, Gembloux, Belgium
| | - Allison Brown
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ashok R Patel
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Iris Tavernier
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium
| | | | - Koen Dewettinck
- Vandemoortele Center Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
25
|
Larkin TJ, Garvey CJ, Shishmarev D, Kuchel PW, Momot KI. Na + and solute diffusion in aqueous channels of Myverol bicontinuous cubic phase: PGSE NMR and computer modelling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:464-471. [PMID: 27002682 DOI: 10.1002/mrc.4432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The apparent diffusion coefficients of 23 Na+ ions and the solute 2-fluoroethylamine present in the aqueous domain of a Myverol/water bulk bicontinuous cubic phase (BCP) were measured using pulsed field-gradient spin echo (PGSE) NMR spectroscopy. The measured values were dependent on the diffusion time interval, which is a characteristic of restricted diffusion. The translational motion of 23 Na+ and water in the aqueous channels of a cubic phase were simulated using a Monte-Carlo random walk algorithm, and the simulation results were compared with those from real PGSE NMR experiments. The simulations indicated that diffusion of 23 Na+ ions and water would appear to be restricted even on the shortest timescales available to PGSE NMR experiments. The micro-viscosity of the aqueous domain of the BCPs was estimated from the longitudinal relaxation times of 23 Na+ and 2-fluoroethylamine; this was three times higher than in free solution and suggests one of (but not the only) likely impediments to the release of hydrophilic drugs from stabilised aqueous dispersions of BCPs (cubosomes) when they are used therapeutically in vivo. Monte Carlo simulations of diffusive efflux from cubosomes suggest that the principal impediment to drug release is presented by a surfactant or lipid barrier at the cubosome surface, which separates the BCP aqueous channels from the bulk solution. The dynamics inferred from these studies informs quantitative predictions of drug delivery from cubosomes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy J Larkin
- Neurosurgery Unit, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales, Australia
| | - Dmitry Shishmarev
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Philip W Kuchel
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Konstantin I Momot
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Carillo KD, Arco S, Wang CC, Tzou DLM. Solid-state NMR investigation of effect of fluorination and methylation on prednisolone conformation. Steroids 2015; 104:263-9. [PMID: 26476185 DOI: 10.1016/j.steroids.2015.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/11/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Prednisolone (Prd) is a polymorphous synthetic corticosteroid that has three crystalline forms mediated by different solvents. In this study, we have demonstrated that solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy is able to resolve the effects of methylation and fluorination on the conformation of the steroidal rings in Prd. Two compounds were chosen for the study, 6-α-methylprednisolone (Prd-6M) and 6-α-fluoroprednisolone (Prd-6F). The (13)C signals of Prd-6F showed primarily doublet patterns, with splittings of 40-380 Hz, indicating multiple ring conformations, whereas the (13)C signals of Prd and Prd-6M exhibited a singlet pattern, indicating a unique conformation. Using evidence from chemical shift deviation and anisotropy analysis, we have demonstrated by solid-state NMR that Prd-6F adopts two different steroidal ring conformations that are different from that of Prd-6M, and less similar to that of unsubstituted Prd.
Collapse
Affiliation(s)
- Kathleen D Carillo
- University of the Philippines Diliman, Diliman, Quezon City 1100, Philippines; Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Susan Arco
- University of the Philippines Diliman, Diliman, Quezon City 1100, Philippines
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
27
|
Gater DL, Saurel O, Iordanov I, Liu W, Cherezov V, Milon A. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophys J 2015; 107:2305-12. [PMID: 25418299 DOI: 10.1016/j.bpj.2014.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022] Open
Abstract
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
Collapse
Affiliation(s)
- Deborah L Gater
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France; Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi, UAE
| | - Olivier Saurel
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Iordan Iordanov
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Wei Liu
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California.
| | - Alain Milon
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
28
|
Tyler AII, Barriga HMG, Parsons ES, McCarthy NLC, Ces O, Law RV, Seddon JM, Brooks NJ. Electrostatic swelling of bicontinuous cubic lipid phases. SOFT MATTER 2015; 11:3279-86. [PMID: 25790335 DOI: 10.1039/c5sm00311c] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.
Collapse
Affiliation(s)
- Arwen I I Tyler
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Reese CW, Strango ZI, Dell ZR, Tristram-Nagle S, Harper PE. Structural insights into the cubic-hexagonal phase transition kinetics of monoolein modulated by sucrose solutions. Phys Chem Chem Phys 2015; 17:9194-204. [PMID: 25758637 PMCID: PMC4381959 DOI: 10.1039/c5cp00175g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12% and 4% respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases.
Collapse
Affiliation(s)
- Caleb W Reese
- Department of Physics and Astronomy, Calvin College, 1734 Knollcrest Circle SE, Grand Rapids, MI, USA.
| | | | | | | | | |
Collapse
|
30
|
Wang D, Chen M, Chein RJ, Ching WM, Hung CH, Tzou DLM. Cation ion specifically induces a conformational change in trans-dehydroandrosterone - a solid-state NMR study. Steroids 2015; 96:73-80. [PMID: 25637678 DOI: 10.1016/j.steroids.2015.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
Abstract
In this work, we demonstrated that calcium (Ca(+2)) is able to induce a conformational change in trans-dehydroandrosterone (DHEA). To this respect, solid-state NMR spectroscopy was applied to a series of DHEA molecules that were incubated with Ca(+2) under different concentrations. The high-resolution (13)C NMR spectra of the DHEA/Ca(+2) mixtures exhibited two distinct sets of signals; one was attributed to DHEA in the free form, and the second set was due to the DHEA/Ca(+2) complex. Based on chemical shift isotropy and anisotropy analyses, we postulated that Ca(+2) might have associated with the oxygen attached to C17 via a lone-pair of electrons, which induced a conformational change in DHEA. Apart from Ca(+2), we also incubated DHEA with magnesium (Mg(+2)) to determine whether Mg(+2) was able to interact with DHEA in a similar manner to Ca(+2). We found that Mg(+2) was able to induce a conformational change in DHEA deviated from that of Ca(+2). These solid-state NMR observations indicate that DHEA is able to interact with cations, such as Mg(+2) and Ca(+2), with specificity.
Collapse
Affiliation(s)
- Darong Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Meiman Chen
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Wei-Min Ching
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
31
|
Michalak Z, Muzzio M, Milianta PJ, Giacomini R, Lee S. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15919-15925. [PMID: 24304231 DOI: 10.1021/la4040535] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The process of water permeation across lipid membranes has significant implications for cellular physiology and homeostasis, and its study may lead to a greater understanding of the relationship between the structure of lipid bilayer and the role that lipid structure plays in water permeation. In this study, we formed a droplet interface bilayer (DIB) by contacting two aqueous droplets together in an immiscible solvent (squalane) containing bilayer-forming surfactant (monoglycerides). Using the DIB model, we present our results on osmotic water permeabilities and activation energy for water permeation of an associated series of unsaturated monoglycerides as the principal component of droplet bilayers, each having the same chain length but differing in the position and number of double bonds, in the absence and presence of a varying concentration of cholesterol. Our findings suggest that the tailgroup structure in a series of monoglyceride bilayers is seen to affect the permeability and activation energy for the water permeation process. Moreover, we have also established the insertion of cholesterol into the droplet bilayer, and have detected its presence via its effect on water permeability. The effect of cholesterol differs depending on the type of monoglyceride. We demonstrate that the DIB can be employed as a convenient model membrane to rapidly explore subtle structural effects on bilayer water permeability.
Collapse
Affiliation(s)
- Zuzanna Michalak
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | | | | | | | | |
Collapse
|