1
|
Kapitonov AA, Ryzhkov II. Modelling the Performance of Electrically Conductive Nanofiltration Membranes. MEMBRANES 2023; 13:596. [PMID: 37367800 DOI: 10.3390/membranes13060596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Electrically conductive membranes are a class of stimuli-responsive materials, which allow the adjustment of selectivity for and the rejection of charged species by varying the surface potential. The electrical assistance provides a powerful tool for overcoming the selectivity-permeability trade-off due to its interaction with charged solutes, allowing the passage of neutral solvent molecules. In this work, a mathematical model for the nanofiltration of binary aqueous electrolytes by an electrically conductive membrane is proposed. The model takes into account the steric as well as Donnan exclusion of charged species due to the simultaneous presence of chemical and electronic surface charges. It is shown that the rejection reaches its minimum at the potential of zero charge (PZC), where the electronic and chemical charges compensate for each other. The rejection increases when the surface potential varies in positive and negative directions with respect to the PZC. The proposed model is successfully applied to a description of experimental data on the rejection of salts and anionic dyes by PANi-PSS/CNT and MXene/CNT nanofiltration membranes. The results provide new insights into the selectivity mechanisms of conductive membranes and can be employed to describe electrically enhanced nanofiltration processes.
Collapse
Affiliation(s)
- Alexey A Kapitonov
- Institute of Computational Modelling SB RAS, Akademgorodok 50-44, 660036 Krasnoyarsk, Russia
- School of Space and Information Technology, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Ilya I Ryzhkov
- Institute of Computational Modelling SB RAS, Akademgorodok 50-44, 660036 Krasnoyarsk, Russia
- School of Space and Information Technology, Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
2
|
Liu X, Zhang L, Cui X, Zhang Q, Hu W, Du J, Zeng H, Xu Q. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102493. [PMID: 34668340 PMCID: PMC8655186 DOI: 10.1002/advs.202102493] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
Collapse
Affiliation(s)
- Xiaopeng Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ling Zhang
- School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Qian Zhang
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Wenjihao Hu
- School of Metallurgy & EnvironmentCentral South UniversityChangshaHunan410083China
| | - Jiang Du
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
3
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
4
|
Chen C, Hu L. Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002890. [PMID: 33108027 DOI: 10.1002/adma.202002890] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Ion transport and regulation are fundamental processes for various devices and applications related to energy storage and conversion, environmental remediation, sensing, ionotronics, and biotechnology. Wood-based materials, fabricated by top-down or bottom-up approaches, possess a unique hierarchically porous fibrous structure that offers an appealing material platform for multiscale ion regulation. The ion transport behavior in these materials can be regulated through structural and compositional engineering from the macroscale down to the nanoscale, imparting wood-based materials with multiple functions for a range of emerging applications. A fundamental understanding of ion transport behavior in wood-based structures enhances the capability to design high-performance ion-regulating devices and promotes the utilization of sustainable wood materials. Combining this unique ion regulation capability with the renewable and cost-effective raw materials available, wood and its derivatives are the natural choice of materials toward sustainability.
Collapse
Affiliation(s)
- Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
5
|
Ryzhkov II, Shchurkina MA, Mikhlina EV, Simunin MM, Nemtsev IV. Switchable ionic selectivity of membranes with electrically conductive surface: Theory and experiment. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Wyss RM, Tian T, Yazda K, Park HG, Shih CJ. Macroscopic Salt Rejection through Electrostatically Gated Nanoporous Graphene. NANO LETTERS 2019; 19:6400-6409. [PMID: 31429571 DOI: 10.1021/acs.nanolett.9b02579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomically thin porous graphene is emerging as one of the most promising candidates for next-generation membrane material owing to the ultrahigh permeation. However, the transport selectivity relies on the precise control over pore size and shape which considerably compromises the scalability. Here, we study electrolyte permeation through a sheet of large-area, porous graphene, with relatively large pore sizes of 20 ± 10 nm. Counterintuitively, a high degree of salt rejection is observed by electrostatic gating, reducing the diffusive flux by up to 1 order of magnitude. We systematically investigate the effects of salt concentration and species, including developing a theory to model the electrolyte diffusion through a nanopore drilled in a sheet of gated graphene. The interplay between graphene quantum capacitance and the electrical double layer is found to selectively modulate the anionic and cationic transport paths, creating voltage-dependent electrochemical barriers when the pore size is comparable to the Debye length. Our findings reveal a new degree of freedom regulating electrolyte permeation through porous two-dimensional materials, complementary to the pore size design and engineering.
Collapse
Affiliation(s)
- Roman M Wyss
- Soft Materials, Department of Materials , Eidgenössische Technische Hochschule (ETH) Zürich , Vladimir-Prelog-Weg 1-5 , Zürich CH-8093, Switzerland
| | - Tian Tian
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences , Eidgenössische Technische Hochschule (ETH) Zürich , Vladimir-Prelog-Weg 1-5 , Zürich CH-8093, Switzerland
| | - Khadija Yazda
- Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering , Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3 , Zürich CH-8092, Switzerland
| | - Hyung Gyu Park
- Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering , Eidgenössische Technische Hochschule (ETH) Zürich , Tannenstrasse 3 , Zürich CH-8092, Switzerland
- Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences , Eidgenössische Technische Hochschule (ETH) Zürich , Vladimir-Prelog-Weg 1-5 , Zürich CH-8093, Switzerland
| |
Collapse
|
7
|
Affiliation(s)
- Yury Gogotsi
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Cheng C, Jiang G, Simon GP, Liu JZ, Li D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. NATURE NANOTECHNOLOGY 2018; 13:685-690. [PMID: 29967459 DOI: 10.1038/s41565-018-0181-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/09/2018] [Indexed: 05/22/2023]
Abstract
Ion transport in nanoconfinement differs from that in bulk and has been extensively researched across scientific and engineering disciplines1-4. For many energy and water applications of nanoporous materials, concentration-driven ion diffusion is simultaneously subjected to a local electric field arising from surface charge or an externally applied potential. Due to the uniquely crowded intermolecular forces under severe nanoconfinement (<2 nm), the transport behaviours of ions can be influenced by the interfacial electrical double layer (EDL) induced by a surface potential, with complex implications, engendering unusual ion dynamics5-7. However, it remains an experimental challenge to investigate how such a surface potential and its coupling with nanoconfinement manipulate ion diffusion. Here, we exploit the tunable nanoconfinement in layered graphene-based nanoporous membranes to show that sub-2 nm confined ion diffusion can be strongly modulated by the surface potential-induced EDL. Depending on the potential sign, the combination and concentration of ion pairs, diffusion rates can be reversibly modulated and anomalously enhanced by 4~7 times within 0.5 volts, across a salt concentration gradient up to seawater salinity. Modelling suggests that this anomalously enhanced diffusion is related to the strong ion-ion correlations under severe nanoconfinement, and cannot be explained by conventional theoretical predictions.
Collapse
Affiliation(s)
- Chi Cheng
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Clayton, Victoria, Australia
| | - Gengping Jiang
- College of Science, Wuhan University of Science and Technology, Wuhan, China
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science on Metallurgical Processing, Wuhan University of Science and Technology, Wuhan, China
| | - George Philip Simon
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Clayton, Victoria, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia.
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| | - Dan Li
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia.
- Department of Materials Science and Engineering and New Horizons Research Centre, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Porous structure and pore size control of mesoporous carbons using a combination of a soft-templating method and a solvent evaporation technique. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
|
11
|
Li D, Jing W, Li S, Shen H, Xing W. Electric Field-Controlled Ion Transport In TiO2 Nanochannel. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11294-11300. [PMID: 25961963 DOI: 10.1021/acsami.5b01505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.
Collapse
Affiliation(s)
- Dan Li
- State Key Lab of Material-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiang Su 210009, China
| | - Wenheng Jing
- State Key Lab of Material-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiang Su 210009, China
| | - Shuaiqiang Li
- State Key Lab of Material-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiang Su 210009, China
| | - Hao Shen
- State Key Lab of Material-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiang Su 210009, China
| | - Weihong Xing
- State Key Lab of Material-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiang Su 210009, China
| |
Collapse
|
12
|
Abstract
Mesoporous carbon materials have been extensively studied because of their vast potential applications ranging from separation and adsorption, catalysis, and electrochemistry to energy storage.
Collapse
Affiliation(s)
- Wang Xin
- College of Water Science
- Beijing Normal University
- Beijing 100875
- China
- State Key Laboratory of Environmental Criteria and Risk Assessment
| | - Yonghui Song
- College of Water Science
- Beijing Normal University
- Beijing 100875
- China
- State Key Laboratory of Environmental Criteria and Risk Assessment
| |
Collapse
|