1
|
Rubio-Andrés A, Bastos-González D, Fernandez-Rodriguez MA. In-situ characterization of microgel monolayers: Controlling isostructural phase transitions for homogeneous crystal drying patterns. J Colloid Interface Sci 2025; 688:328-340. [PMID: 40014994 DOI: 10.1016/j.jcis.2025.02.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The self-assembly of microgels at fluid interfaces and transfer to solid substrates has proven valuable in fields like photonics, plasmonics, and nanofabrication. However, this process is constrained by the isostructural phase transition (IPT) that occurs under sufficiently high compression, disrupting the monolayer order. Understanding the mechanisms driving IPT is crucial to extend their applicability to a wider range of interparticle distances. We tackle this problem by studying the monolayer conformation via in-situ microscopy at the interface. We monitored the microgel monolayer throughout the different stages of the deposition onto a solid substrate. We found that neither the compression at the interface nor the capillary forces arising from the receding meniscus during the deposition triggered the IPT. In fact, the still wet deposited monolayers do not exhibit IPT regardless of the compression of the monolayer. Instead, the IPT occurs during the drying of the wet deposited monolayers, particularly when the capillary force overcomes the adhesion force. Additionally, we found a new mechanism to modulate the interparticle distance by light-induced Marangoni forces. Instead, IPT arises from capillary forces generated during the drying of the water film after the monolayer is transferred. We propose a theoretical model to estimate the adhesion force between the microgels and the substrate based on the compression curve of the monolayer. Furthermore, we suggest a novel method combining a Langmuir-Schaefer deposition with supercritical drying to fully prevent the IPT, resulting also in a new tool to study an otherwise inaccessible regime with highly compressed monolayers. Our findings advance the understanding of soft colloidal self-assembly at fluid interfaces and expand their applications, enabling the creation of larger substrates with highly ordered self-assembled microgel monolayers with tunable interparticle distance.
Collapse
Affiliation(s)
- Antonio Rubio-Andrés
- Laboratory of Surface and Interface Physics, Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, 18071, Spain
| | - Delfi Bastos-González
- Laboratory of Surface and Interface Physics, Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, 18071, Spain
| | - Miguel Angel Fernandez-Rodriguez
- Laboratory of Surface and Interface Physics, Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, 18071, Spain.
| |
Collapse
|
2
|
Baulin VA, Giacometti A, Fedosov DA, Ebbens S, Varela-Rosales NR, Feliu N, Chowdhury M, Hu M, Füchslin R, Dijkstra M, Mussel M, van Roij R, Xie D, Tzanov V, Zu M, Hidalgo-Caballero S, Yuan Y, Cocconi L, Ghim CM, Cottin-Bizonne C, Miguel MC, Esplandiu MJ, Simmchen J, Parak WJ, Werner M, Gompper G, Hanczyc MM. Intelligent soft matter: towards embodied intelligence. SOFT MATTER 2025; 21:4129-4145. [PMID: 40358970 DOI: 10.1039/d5sm00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Intelligent soft matter lies at the intersection of materials science, physics, and cognitive science, promising to change how we design and interact with materials. This transformative field aims to create materials with life-like capabilities, such as perception, learning, memory, and adaptive behavior. Unlike traditional materials, which typically perform static or predefined functions, intelligent soft matter can dynamically interact with its environment, integrating multiple sensory inputs, retaining past experiences, and making decisions to optimize its responses. Inspired by biological systems, these materials leverage the inherent properties of soft matter such as flexibility, adaptability, and responsiveness to perform functions that mimic cognitive processes. By synthesizing current research trends and projecting their evolution, we present a forward-looking perspective on how intelligent soft matter could be constructed, with the aim of inspiring innovations in areas such as biomedical devices, adaptive robotics, and beyond. We highlight new pathways for integrating sensing, memory and actuation with low-power internal operations, and we discuss key challenges in realizing materials that exhibit truly "intelligent behavior". These approaches outline a path toward more robust, versatile, and scalable materials that can potentially act, compute, and "think" through their inherent intrinsic material properties-moving beyond traditional smart technologies that rely on external control.
Collapse
Affiliation(s)
- Vladimir A Baulin
- Universitat Rovira i Virgili, Tarragona, Spain
- Active Inference Institute, Davis, California, USA.
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Universita 'Ca' Foscari Venezia, Via Torino 155, 30172 Venezia, and Italy European Centre for Living Technology (ECLT) Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephen Ebbens
- Department of Chemical and Biological Engineering University of Sheffield Sheffield, S1 3JD, UK
| | | | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer- Institut für Angewandte Polymerforschung IAP, Hamburg, Germany
| | - Mithun Chowdhury
- Lab of Soft Interfaces, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Minghan Hu
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | | | - Marjolein Dijkstra
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Matan Mussel
- Department of Physics, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - René van Roij
- Institute for Theoretical Physics, Utrecht University, The Netherlands
| | - Dong Xie
- University of Edinburgh, Edinburgh, UK
| | | | - Mengjie Zu
- Institute of Science and Technology, Vienna, Austria
| | | | - Ye Yuan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Luca Cocconi
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), D-37077 Göttingen, Germany
| | - Cheol-Min Ghim
- Departments of Physics and Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Cécile Cottin-Bizonne
- Université Claude Bernard Lyon 1, CNRS UMR 5306, Institut Lumière Matière, Villeurbanne 69622, France
| | - M Carmen Miguel
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona & Institute of Complex Systems (UBICS), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Jose Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain
| | - Juliane Simmchen
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | - Marco Werner
- Division Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin M Hanczyc
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, Trento 38123, Italy
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
3
|
Singh P, Korevaar PA. Predator-Prey Behavior of Droplets Propelling Through Self-Generated Channels in Crystalline Surfactant Layers. Angew Chem Int Ed Engl 2025:e202502352. [PMID: 40197766 DOI: 10.1002/anie.202502352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
Motile droplets provide an attractive platform for liquid matter-based applications and protocell analogues displaying life-like features. The functionality of collectively operating droplets increases by the advance of well-designed (physico)chemical systems directing droplet-droplet interactions. Here, we report a strategy based on crystalline surfactant layers at air/water interfaces, which sustain the propulsion of floating droplets and at the same time shape the paths for other droplets attracted by them. First, we show how decylamine forms a closed, crystalline layer that remains at the air/water interface. Second, we demonstrate how aldehyde-based oil droplets react to decylamine in the crystalline layer by forming an imine, causing the droplets to move through the layer while leaving behind an open channel (comparable to "Pac-Man"). Third, we introduce tri(ethylene glycol) monododecylether (C12E3) droplets in the crystalline layer. The crystalline layer suppresses the motion of the C12E3 droplets, however, the aldehyde droplets create surface tension gradients upon depletion of surfactants from the air/water interface, thereby driving Marangoni flows that attract the C12E3 droplets as well as the myelin filaments they grow: Causing the C12E3 droplets to chase, and ultimately catch, the aldehyde droplets along the channels they have created, featuring a predator-prey analogy established at an air/water interface.
Collapse
Affiliation(s)
- Priyanshu Singh
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
4
|
Liu K, Blokhuis AWP, Dijt SJ, Wu J, Hamed S, Kiani A, Matysiak BM, Otto S. Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport. Nat Chem 2024:10.1038/s41557-024-01665-z. [PMID: 39516669 DOI: 10.1038/s41557-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Fuelled chemical systems have considerable functional potential that remains largely unexplored. Here we report an approach to transient amide bond formation and use it to harness chemical energy and convert it to mechanical motion by integrating dissipative self-assembly and the Marangoni effect in a source-sink system. Droplets are formed through dissipative self-assembly following the reaction of octylamine with 2,3-dimethylmaleic anhydride. The resulting amides are hydrolytically labile, making the droplets transient, which enables them to act as a source of octylamine. A sink for octylamine was created by placing a drop of oleic acid at the air-water interface. This source-sink system sets up a gradient in surface tension, which gives rise to a macroscopic Marangoni flow that can transport the droplets in solution with tunable speed. Carbodiimides can fuel this motion by converting diacid waste back to anhydride. This study shows how fuelling at the molecular level can, via assembly at the supramolecular level, lead to liquid flow at the macroscopic level.
Collapse
Affiliation(s)
- Kai Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Alex W P Blokhuis
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Sietse J Dijt
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Shana Hamed
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Bartosz M Matysiak
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Khatun AA, Chotalia A, Das K, Dixit S, Parmananda P. Surface tension gradient invoked path selection. Phys Chem Chem Phys 2024; 26:25590-25598. [PMID: 39331368 DOI: 10.1039/d4cp01832j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Certain active particles execute continuous self-propelled motion at the air-water interface due to Marangoni forces. Here, we report motion of camphor and pentanol infused disks in an L-shaped two path and a Y-shaped three path channel. These channels are open to the sink. In both the cases, these channels have asymmetry in arm-lengths while the arm-widths are equal. The active disks are introduced in the decision region (center) of the channel from where they elect to move along a particular path towards the sink. We observe that these active disks show a preference for reaching the sink along the minimal (in length) path. The camphor disk prefers the minimal path 80% of the time in the two-path and 68% of the time in the three-path channels, while for the pentanol disk, the preference rates for the minimal path selection are 88% and 74%, respectively. Furthermore, we perform numerical analysis to validate the experimental observations.
Collapse
Affiliation(s)
- Anjuman Ara Khatun
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400 076, India.
| | - Aarsh Chotalia
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400 076, India.
| | - Kalpita Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400 076, India.
| | - Shiva Dixit
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400 076, India.
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - P Parmananda
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400 076, India.
| |
Collapse
|
6
|
Wang X, Yang Y, Roh S, Hormozi S, Gianneschi NC, Abbott NL. Self-Timed and Spatially Targeted Delivery of Chemical Cargo by Motile Liquid Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311311. [PMID: 38422370 DOI: 10.1002/adma.202311311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Indexed: 03/02/2024]
Abstract
A key challenge underlying the design of miniature machines is encoding materials with time- and space-specific functional behaviors that require little human intervention. Dissipative processes that drive materials beyond equilibrium and evolve continuously with time and location represent one promising strategy to achieve such complex functions. This work reports how internal nonequilibrium states of liquid crystal (LC) emulsion droplets undergoing chemotaxis can be used to time the delivery of a chemical agent to a targeted location. During ballistic motion, hydrodynamic shear forces dominate LC elastic interactions, dispersing microdroplet inclusions (microcargo) within double emulsion droplets. Scale-dependent colloidal forces then hinder the escape of dispersed microcargo from the propelling droplet. Upon arrival at the targeted location, a circulatory flow of diminished strength allows the microcargo to cluster within the LC elastic environment such that hydrodynamic forces grow to exceed colloidal forces and thus trigger the escape of the microcargo. This work illustrates the utility of the approach by using microcargo that initiate polymerization upon release through the outer interface of the carrier droplet. These findings provide a platform that utilizes nonequilibrium strategies to design autonomous spatial and temporal functions into active materials.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Yu Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sangchul Roh
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sarah Hormozi
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering and Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
7
|
Matsuo M, Ejima K, Nakata S. Recursively positive and negative chemotaxis coupling with reaction kinetics in self-organized inanimate motion. J Colloid Interface Sci 2023; 639:324-332. [PMID: 36805757 DOI: 10.1016/j.jcis.2023.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Reconstructing recursive chemotaxis in inanimate self-propelled objects is inevitable in the development of recursively and autonomously artificial mass transport systems. However, the fabrication of inanimately recursive chemotaxis has been extremely challenging because of the difficulty in introducing competitive positive and negative feedback into an inanimate self-propelled object. Herein, a coumarin derivative (coumarin, 4-methylcoumarin (4-MC), or 6-methylcoumarin (6-MC))-based disk floated on water as a self-propelled object exhibited characteristic features of motion; these features include continuous motion, repetition between positive and negative chemotaxis to the Na3PO4 powder as a base stimulus, and oscillatory motion above the Na3PO4 powder depending on the Na3PO4 density of the powder and the functional group of coumarin derivatives. The mechanism of the characteristic features of motion to the base stimulus is discussed in relation to the surface tension of the coumarin derivatives as the driving force of motion and the reaction rate of the hydrolysis between coumarin derivatives and OH- obtained from Na3PO4. This study suggests a novel avenue for developing a recursive chemotactic system coupled with reaction kinetics in self-organized motion.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kaho Ejima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
8
|
Egbert M, Hanczyc MM, Harvey I, Virgo N, Parke EC, Froese T, Sayama H, Penn AS, Bartlett S. Behaviour and the Origin of Organisms. ORIGINS LIFE EVOL B 2023; 53:87-112. [PMID: 37166609 DOI: 10.1007/s11084-023-09635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/03/2023] [Indexed: 05/12/2023]
Abstract
It is common in origins of life research to view the first stages of life as the passive result of particular environmental conditions. This paper considers the alternative possibility: that the antecedents of life were already actively regulating their environment to maintain the conditions necessary for their own persistence. In support of this proposal, we describe 'viability-based behaviour': a way that simple entities can adaptively regulate their environment in response to their health, and in so doing, increase the likelihood of their survival. Drawing on empirical investigations of simple self-preserving abiological systems, we argue that these viability-based behaviours are simple enough to precede neo-Darwinian evolution. We also explain how their operation can reduce the demanding requirements that mainstream theories place upon the environment(s) in which life emerged.
Collapse
Affiliation(s)
- Matthew Egbert
- School of Computer Science, University of Auckland, Auckland, New Zealand.
- Te Ao Mārama, University of Auckland, Auckland, New Zealand.
| | | | | | - Nathaniel Virgo
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo, Japan
| | - Emily C Parke
- Te Ao Mārama, University of Auckland, Auckland, New Zealand
- Philosophy, School of Humanities, University of Auckland, Auckland, New Zealand
| | - Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - Hiroki Sayama
- Center for Collective Dynamics of Complex Systems, Binghamton University, State University of New York, New York, USA
| | - Alexandra S Penn
- Centre for Evaluation of Complexity at the Nexus, University of Surrey, Guildford, UK
| | - Stuart Bartlett
- California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Hamano Y, Ikeda K, Odagiri K, Suematsu NJ. Reproduction of bacterial chemotaxis by a non-living self-propelled object. Sci Rep 2023; 13:8173. [PMID: 37210558 DOI: 10.1038/s41598-023-34788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023] Open
Abstract
Taxic behavior as a response to an external stimulus is a fundamental function of living organisms. Some bacteria successfully implement chemotaxis without directly controlling the direction of movement. They periodically alternate between run and tumble, i.e., straight movement and change in direction, respectively. They tune their running period depending on the concentration gradient of attractants around them. Consequently, they respond to a gentle concentration gradient stochastically, which is called "bacterial chemotaxis." In this study, such a stochastic response was reproduced by a non-living self-propelled object. We used a phenanthroline disk floating on an aqueous solution of Fe[Formula: see text]. The disk spontaneously alternated between rapid motion and rest, similar to the run-and-tumble motion of bacteria. The movement direction of the disk was isotropic independent of the concentration gradient. However, the existing probability of the self-propelled object was higher at the low-concentration region, where the run length was longer. To explain the mechanism underlying this phenomenon, we proposed a simple mathematical model that considers random walkers whose run length depends on the local concentration and direction of movement against the gradient. Our model adopts deterministic functions to reproduce the both effects, which is instead of stochastic tuning the period of operation used in the previous reports. This allows us to analyze the proposed model mathematically, which indicated that our model reproduces both positive and negative chemotaxis depending on the competition between the local concentration effect and it's gradient effect. Owing to the newly introduced directional bias, the experimental observations were reproduced numerically and analytically. The results indicate that the directional bias response to the concentration gradient is an essential parameter for determining bacterial chemotaxis. This rule might be universal for the stochastic response of self-propelled particles in living and non-living systems.
Collapse
Affiliation(s)
- Yuko Hamano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Kota Ikeda
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Tokyo, Japan
| | - Kenta Odagiri
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Tokyo, Japan
- School of Network and Information, Senshu University, Kanagawa, Japan
| | - Nobuhiko J Suematsu
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan.
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan.
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Tokyo, Japan.
| |
Collapse
|
10
|
Gershenson C. Emergence in Artificial Life. ARTIFICIAL LIFE 2023; 29:153-167. [PMID: 36787448 DOI: 10.1162/artl_a_00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Even when concepts similar to emergence have been used since antiquity, we lack an agreed definition. However, emergence has been identified as one of the main features of complex systems. Most would agree on the statement "life is complex." Thus understanding emergence and complexity should benefit the study of living systems. It can be said that life emerges from the interactions of complex molecules. But how useful is this to understanding living systems? Artificial Life (ALife) has been developed in recent decades to study life using a synthetic approach: Build it to understand it. ALife systems are not so complex, be they soft (simulations), hard (robots), or wet(protocells). Thus, we can aim at first understanding emergence in ALife, to then use this knowledge in biology. I argue that to understand emergence and life, it becomes useful to use information as a framework. In a general sense, I define emergence as information that is not present at one scale but present at another. This perspective avoids problems of studying emergence from a materialist framework and can also be useful in the study of self-organization and complexity.
Collapse
Affiliation(s)
- Carlos Gershenson
- Universidad Nacional, Autánoma de México.
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
- Centro de Ciencias de la Complejidad
- Lakeside Labs GmbH
- Santa Fe Institute
| |
Collapse
|
11
|
Howison T, Crisp H, Hauser S, Iida F. On the Stability and Behavioral Diversity of Single and Collective Bernoulli Balls. ARTIFICIAL LIFE 2023; 29:168-186. [PMID: 37022940 DOI: 10.1162/artl_a_00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to express diverse behaviors is a key requirement for most biological systems. Underpinning behavioral diversity in the natural world is the embodied interaction between the brain, body, and environment. Dynamical systems form the basis of embodied agents, and can express complex behavioral modalities without any conventional computation. While significant study has focused on designing dynamical systems agents with complex behaviors, for example, passive walking, there is still a limited understanding about how to drive diversity in the behavior of such systems. In this article, we present a novel hardware platform for studying the emergence of individual and collective behavioral diversity in a dynamical system. The platform is based on the so-called Bernoulli ball, an elegant fluid dynamics phenomenon in which spherical objects self-stabilize and hover in an airflow. We demonstrate how behavioral diversity can be induced in the case of a single hovering ball via modulation of the environment. We then show how more diverse behaviors are triggered by having multiple hovering balls in the same airflow. We discuss this in the context of embodied intelligence and open-ended evolution, suggesting that the system exhibits a rudimentary form of evolutionary dynamics in which balls compete for favorable regions of the environment and exhibit intrinsic "alive" and "dead" states based on their positions in or outside of the airflow.
Collapse
Affiliation(s)
- Toby Howison
- University of Cambridge, Bio-Inspired Robotics Lab, Department of Engineering
| | - Harriet Crisp
- University of Cambridge, Bio-Inspired Robotics Lab, Department of Engineering
| | - Simon Hauser
- University of Cambridge, Bio-Inspired Robotics Lab, Department of Engineering
| | - Fumiya Iida
- University of Cambridge, Bio-Inspired Robotics Lab, Department of Engineering.
| |
Collapse
|
12
|
Suematsu NJ, Udagawa S. Real-time Mode-switching of a Self-propelled Droplet Controlled by the Photosensitive Belousov–Zhabotinsky Reaction. CHEM LETT 2023. [DOI: 10.1246/cl.220513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Nobuhiko J. Suematsu
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano-ku, Tokyo 165-8525, Japan
- Meiji Institute for Advanced Study on Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano-ku, Tokyo 165-8525, Japan
| | - Satoshi Udagawa
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano-ku, Tokyo 165-8525, Japan
| |
Collapse
|
13
|
Back O, Asally M, Wang Z, Hayashi Y. Electrotaxis behavior of droplets composed of aqueous Belousov-Zhabotinsky solutions suspended in oil phase. Sci Rep 2023; 13:1340. [PMID: 36693937 PMCID: PMC9873656 DOI: 10.1038/s41598-023-27639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Taxis is ubiquitous in biological and physical chemistry systems as a response to various external stimulations. We prepared aqueous droplets containing Belousov-Zhabotinsky (BZ) solutions suspended on an oleic acid oil phase subject to DC electric field and found that these BZ droplets undergo chemically driven translational motion towards the negative electrode under DC electric field. This electrotaxis phenomenon originates from the field-induced inhomogeneous distribution of reactants, in particular Br[Formula: see text] ions, and consequently the biased location of the leading centers towards the positive electrode. We define the 'leading center' (LC) as a specific location within the droplet where the BZ chemical wave (target pattern) is initiated. The chemical wave generated from the LC propagates passing the droplet center of mass and creates a gradient of interfacial tension when reaching the droplet-oil interface on the other side, resulting in a momentum exchange between the droplet and oil phases which drives the droplet motion in the direction of the electric field. A greater electric field strength renders a more substantial electrotaxis effect.
Collapse
Affiliation(s)
- Oliver Back
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Zuowei Wang
- Department of Mathematics and Statistics, School of Mathematical, Physical and Computational Sciences, University of Reading, Reading, UK
| | - Yoshikatsu Hayashi
- Department of Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
14
|
Harrison D, Rorot W, Laukaityte U. Mind the matter: Active matter, soft robotics, and the making of bio-inspired artificial intelligence. Front Neurorobot 2022; 16:880724. [PMID: 36620483 PMCID: PMC9815774 DOI: 10.3389/fnbot.2022.880724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Philosophical and theoretical debates on the multiple realisability of the cognitive have historically influenced discussions of the possible systems capable of instantiating complex functions like memory, learning, goal-directedness, and decision-making. These debates have had the corollary of undermining, if not altogether neglecting, the materiality and corporeality of cognition-treating material, living processes as "hardware" problems that can be abstracted out and, in principle, implemented in a variety of materials-in particular on digital computers and in the form of state-of-the-art neural networks. In sum, the matter in se has been taken not to matter for cognition. However, in this paper, we argue that the materiality of cognition-and the living, self-organizing processes that it enables-requires a more detailed assessment when understanding the nature of cognition and recreating it in the field of embodied robotics. Or, in slogan form, that the matter matters for cognitive form and function. We pull from the fields of Active Matter Physics, Soft Robotics, and Basal Cognition literature to suggest that the imbrication between material and cognitive processes is closer than standard accounts of multiple realisability suggest. In light of this, we propose upgrading the notion of multiple realisability from the standard version-what we call 1.0-to a more nuanced conception 2.0 to better reflect the recent empirical advancements, while at the same time averting many of the problems that have been raised for it. These fields are actively reshaping the terrain in which we understand materiality and how it enables, mediates, and constrains cognition. We propose that taking the materiality of our embodied, precarious nature seriously furnishes an important research avenue for the development of embodied robots that autonomously value, engage, and interact with the environment in a goal-directed manner, in response to existential needs of survival, persistence, and, ultimately, reproduction. Thus, we argue that by placing further emphasis on the soft, active, and plastic nature of the materials that constitute cognitive embodiment, we can move further in the direction of autonomous embodied robots and Artificial Intelligence.
Collapse
Affiliation(s)
- David Harrison
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, United Kingdom
- Leverhulme Centre for the Future of Intelligence, Cambridge, United Kingdom
- Konrad Lorenz Institute for Evolution and Cognition Research, Vienna, Austria
| | - Wiktor Rorot
- Human Interactivity and Language Lab, Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Urte Laukaityte
- Department of Philosophy, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
De Bari B, Kondepudi DK, Dixon JA. Foraging Dynamics and Entropy Production in a Simulated Proto-Cell. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1793. [PMID: 36554198 PMCID: PMC9778031 DOI: 10.3390/e24121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
All organisms depend on a supply of energetic resources to power behavior and the irreversible entropy-producing processes that sustain them. Dissipative structure theory has often been a source of inspiration for better understanding the thermodynamics of biology, yet real organisms are inordinately more complex than most laboratory systems. Here we report on a simulated chemical dissipative structure that operates as a proto cell. The simulated swimmer moves through a 1D environment collecting resources that drive a nonlinear reaction network interior to the swimmer. The model minimally represents properties of a simple organism including rudimentary foraging and chemotaxis and an analog of a metabolism in the nonlinear reaction network. We evaluated how dynamical stability of the foraging dynamics (i.e., swimming and chemotaxis) relates to the rate of entropy production. Results suggested a relationship between dynamical steady states and entropy production that was tuned by the relative coordination of foraging and metabolic processes. Results include evidence in support of and contradicting one formulation of a maximum entropy production principle. We discuss the status of this principle and its relevance to biology.
Collapse
Affiliation(s)
- Benjamin De Bari
- Department of Psychology, Lehigh University, Bethlehem, PA 18015, USA
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA
| | - Dilip K. Kondepudi
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - James A. Dixon
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
16
|
Winkens M, Korevaar PA. Self-Organization Emerging from Marangoni and Elastocapillary Effects Directed by Amphiphile Filament Connections. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10799-10809. [PMID: 36005886 PMCID: PMC9454263 DOI: 10.1021/acs.langmuir.2c01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Indexed: 05/29/2023]
Abstract
Self-organization of meso- and macroscale structures is a highly active research field that exploits a wide variety of physicochemical phenomena, including surface tension, Marangoni flow, and (elasto)capillary effects. The release of surface-active compounds generates Marangoni flows that cause repulsion, whereas capillary forces attract floating particles via the Cheerios effect. Typically, the interactions resulting from these effects are nonselective because the gradients involved are uniform. In this work, we unravel the mechanisms involved in the self-organization of amphiphile filaments that connect and attract droplets floating at the air-water interface, and we demonstrate their potential for directional gradient formation and thereby selective interaction. We simulate Marangoni flow patterns resulting from the release and depletion of amphiphile molecules by source and drain droplets, respectively, and we predict that these flow patterns direct the growth of filaments from the source droplets toward specific drain droplets, based on their amphiphile depletion rate. The interaction between such droplets is then investigated experimentally by charting the flow patterns in their surroundings, while the role of filaments in source-drain attraction is studied using microscopy. Based on these observations, we attribute attraction of drain droplets and even solid objects toward the source to elastocapillary effects. Finally, the insights from our simulations and experiments are combined to construct a droplet-based system in which the composition of drain droplets regulates their ability to attract filaments and as a consequence be attracted toward the source. Thereby, we provide a novel method through which directional attraction can be established in synthetic self-organizing systems and advance our understanding of how complexity arises from simple building blocks.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
17
|
Roy T, Chaurasia SS, Parmananda P. Phase-flip transition in volume-mismatched pairs of coupled 1-pentanol drops. Phys Rev E 2022; 106:034614. [PMID: 36266858 DOI: 10.1103/physreve.106.034614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
We have explored a variety of synchronization domains and observed phase-flip transition in a pair of coupled 1-pentanol drops as a function of the volume mismatch. Both experimental observations and numerical studies are presented. The experiments were carried out in a rectangular channel in a ferroin deionized water solution premixed with some volume of pentanol. A single pentanol drop (≥ 3μL) performs back and forth oscillations along the length of the channel due to the well-known Marangoni forces. In the present work, for a pair of drops, the drop 1 volume was changed from 3 to 5 μL in steps of 1μL, whereas the drop 2 volume was varied from 1 to 3 μL in steps of 0.5μL. A systematic investigation of all the possible combinations of the drop volumes showed the presence of three different types of synchrony-in-phase, antiphase, and phase-switched. In-phase synchronization was robust for a volume mismatch of >3.0μL between the two drops. On the other hand, antiphase synchronization was robust when the volume mismatch was <2.0μL. The phase-switched state is a synchronized state involving a phase-flip transition in the time domain. This state was observed for the intermediate range of volume mismatch. Numerically, the system has been investigated using two Stuart-Landau oscillators interacting via a coupling function in the form of Lennard-Jones potential. The numerical results suitably capture both in-phase and antiphase oscillations for a pair of volume-mismatched pentanol drops.
Collapse
Affiliation(s)
- Tanushree Roy
- Department of Physics, IIT Bombay, Mumbai-400076, Maharashtra, India
| | | | - P Parmananda
- Department of Physics, IIT Bombay, Mumbai-400076, Maharashtra, India
| |
Collapse
|
18
|
Kaburagi M, Kojima T, Asakura K, Banno T. pH-Sensitive Controlled Motion of Micrometer-sized Oil Droplets in a Solution of Surfactants Containing Fumaric Acid Derivatives. J Oleo Sci 2022; 71:1319-1326. [PMID: 35965092 DOI: 10.5650/jos.ess22129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Self-propelled droplets are of considerable interest as an appropriate model for understanding the self-propulsion of objects in the fields of nonequilibrium physics and nonlinear science. Several research groups have reported the monodirectional motion of droplets, that is, chemotaxis, using stimuli-responsive materials. However, the precise control of chemotaxis remains challenging from the perspective of synthetic chemistry because chemotactic motion is primarily induced by the consumption of reactive oil or surfactants. Herein, we report a chemical system containing pH-responsive fumaric acid derivatives, in which the oil droplet exhibited positive chemotaxis over a wide pH range-from basic to acidic conditions. From the measurements of the interfacial tension between the oil and aqueous phases, it was deduced that the positive chemotaxis was due to heterogeneity in the interfacial tension of the droplet surface, which was accompanied by the production of surface-active compounds in the pH gradient in a linear-type channel.
Collapse
Affiliation(s)
- Mari Kaburagi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Tomoya Kojima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|
19
|
Bartlett S, Louapre D. Provenance of life: Chemical autonomous agents surviving through associative learning. Phys Rev E 2022; 106:034401. [PMID: 36266823 DOI: 10.1103/physreve.106.034401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/21/2022] [Indexed: 06/16/2023]
Abstract
We present a benchmark study of autonomous, chemical agents exhibiting associative learning of an environmental feature. Associative learning systems have been widely studied in cognitive science and artificial intelligence but are most commonly implemented in highly complex or carefully engineered systems, such as animal brains, artificial neural networks, DNA computing systems, and gene regulatory networks, among others. The ability to encode environmental information and use it to make simple predictions is a benchmark of biological resilience and underpins a plethora of adaptive responses in the living hierarchy, spanning prey animal species anticipating the arrival of predators to epigenetic systems in microorganisms learning environmental correlations. Given the ubiquitous and essential presence of learning behaviors in the biosphere, we aimed to explore whether simple, nonliving dissipative structures could also exhibit associative learning. Inspired by previous modeling of associative learning in chemical networks, we simulated simple systems composed of long- and short-term memory chemical species that could encode the presence or absence of temporal correlations between two external species. The ability to learn this association was implemented in Gray-Scott reaction-diffusion spots, emergent chemical patterns that exhibit self-replication and homeostasis. With the novel ability of associative learning, we demonstrate that simple chemical patterns can exhibit a broad repertoire of lifelike behavior, paving the way for in vitro studies of autonomous chemical learning systems, with potential relevance to artificial life, origins of life, and systems chemistry. The experimental realization of these learning behaviors in protocell or coacervate systems could advance a new research direction in astrobiology, since our system significantly reduces the lower bound on the required complexity for autonomous chemical learning.
Collapse
Affiliation(s)
- Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA and Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - David Louapre
- Ubisoft Entertainment, 94160 Saint-Mandé, France and Science Étonnante, 75014 Paris, France†
| |
Collapse
|
20
|
Watanabe C, Tanaka S, Löffler RJG, Hanczyc MM, Górecki J. Dynamic ordering caused by a source-sink relation between two droplets. SOFT MATTER 2022; 18:6465-6474. [PMID: 35993153 DOI: 10.1039/d2sm00497f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two droplets composed of different chemicals, 1-decanol and liquid paraffin, floating on the water surface show characteristic co-responsive behavior. The presence of two different types of droplets in the system imposes an asymmetry that would not be possible with single droplets alone. The self-propulsion and interactions between droplets appear because surface active 1-decanol molecules provided by the source are absorbed by the paraffin sink thus generating an asymmetric surface tension gradient. This source-sink relation between droplets stabilizes and enhances the self-propulsion, and leads to a variety of dynamic structures including oscillations in the inter-droplet distance. We found that the character of time evolution also depends on the concentration of dye, Sudan Black B, initially used just to stain the decanol droplet. A simple mathematical model explains the transition between the stationary state and the oscillations as a Hopf bifurcation.
Collapse
Affiliation(s)
- Chiho Watanabe
- Graduate School of Integrated Sciences for life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| | - Shinpei Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Richard J G Löffler
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
21
|
Kitahata H, Koyano Y, Löffler RJG, Górecki J. Complexity and bifurcations in the motion of a self-propelled rectangle confined in a circular water chamber. Phys Chem Chem Phys 2022; 24:20326-20335. [PMID: 35980173 DOI: 10.1039/d2cp02456j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We consider the motion of a self-propelled object of rectangular shape inside a circular water chamber. The mathematical model of self-motion includes equations for the orientation and location of the rectangle and reaction-diffusion equation with an effective diffusion coefficient for the time evolution of the surface concentration of active molecules. Numerical simulations of motion were performed for different values of the ratio between the supply rate S and the evaporation rate a of active molecules. Treating S0 = S/a as a control parameter, we found the critical behavior in variables characterizing the trajectory and identified different types of motion. If the value of S0 is small, the rectangle rests at the chamber center. For larger S0, a reciprocal motion during which the rectangle passes through the center is observed. At yet higher supply rates, the star-polygonal motion appears, and the trajectory remains at a distance from the chamber center. In the experiments with a rectangle made of camphor-camphene-polypropylene plastic moving in a Petri dish, we observed the transition from the star-polygonal motion to the reciprocal motion in time. This transition can be understood on the basis of the developed model if we assume that the supply rate decreases in time.
Collapse
Affiliation(s)
- Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan.
| | - Yuki Koyano
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Richard J G Löffler
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Polo Scientifico e Tecnologico Fabio Ferrari, Polo B, Via Sommarive 9, Povo, 38123, Trentino Alto-Adige, Italy.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Jerzy Górecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
22
|
Frank BD, Djalali S, Baryzewska AW, Giusto P, Seeberger PH, Zeininger L. Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. Nat Commun 2022; 13:2562. [PMID: 35538083 PMCID: PMC9091213 DOI: 10.1038/s41467-022-30229-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
We report, for the first time, a chemotactic motion of emulsion droplets that can be controllably and reversibly altered. Our approach is based on using biphasic Janus emulsion droplets, where each phase responds differently to chemically induced interfacial tension gradients. By permanently breaking the symmetry of the droplets' geometry and composition, externally evoked gradients in surfactant concentration or effectiveness induce anisotropic Marangoni-type fluid flows adjacent to each of the two different exposed interfaces. Regulation of the competitive fluid convections then enables a controllable alteration of the speed and the direction of the droplets' chemotactic motion. Our findings provide insight into how compositional anisotropy can affect the chemotactic behavior of purely liquid-based microswimmers. This has implications for the design of smart and adaptive soft microrobots that can autonomously regulate their response to changes in their chemical environment by chemotactically moving towards or away from a certain target, such as a bacterium.
Collapse
Affiliation(s)
- Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Saveh Djalali
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Agata W Baryzewska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
23
|
Gao C, Feng Y, Wilson DA, Tu Y, Peng F. Micro-Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106263. [PMID: 35032145 DOI: 10.1002/smll.202106263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 XZ, The Netherlands
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
24
|
Roy T, Chaurasia SS, Cruz JM, Pimienta V, Parmananda P. Modes of synchrony in self-propelled pentanol drops. SOFT MATTER 2022; 18:1688-1695. [PMID: 35146497 DOI: 10.1039/d1sm01488a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report various modes of synchrony observed for a population of two, three and four pentanol drops in a rectangular channel at the air-water interface. Initially, the autonomous oscillations of a single 1-pentanol drop were studied in a ferroin DI water solution pre-mixed with some volume of pentanol. A pentanol drop performs continuous motion on the air-water interface due to Marangoni forces. A linear channel was prepared to study the uniaxial movement of the drop(s). Thereafter, a systematic study of the self-propelled motion of a 1-pentanol drop was reported as a function of the drop volume. Subsequently, the coupled dynamics were studied for two, three and four drops, respectively. We observed anti-phase oscillations in a pair of pentanol drops. In the case of three drops, relay synchronization was observed, wherein consecutive pairs of drops were exhibiting out-of-phase oscillations and alternate drops were performing in-phase oscillations. Four pentanol drops showed two different modes of synchrony: one was relay synchrony and the other was out-of-phase oscillations between two pairs of drops (within a pair, the drops exhibit in-phase oscillations).
Collapse
Affiliation(s)
- Tanushree Roy
- Department of Physics, IIT Bombay, Mumbai 400076, Maharashtra, India.
| | | | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - V Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne 31062, Toulouse Cedex 9, France
| | - P Parmananda
- Department of Physics, IIT Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
25
|
Yasugahira Y, Tatsumi Y, Yamanaka O, Nishimori H, Nagayama M, Nakata S. Catch and Release Chemotaxis. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yusuke Yasugahira
- Research Institute for Electronic Science Hokkaido University N10 W8, Kita-Ward Sapporo 060-0810 Japan
| | - Yuki Tatsumi
- Graduate School of Integrated Sciences for Life Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Osamu Yamanaka
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS) Meiji University 4-21-1 Nakano, Nakano-ku Tokyo 164-8525 Japan
| | - Hiraku Nishimori
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS) Meiji University 4-21-1 Nakano, Nakano-ku Tokyo 164-8525 Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science Hokkaido University N10 W8, Kita-Ward Sapporo 060-0810 Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
26
|
An Q, Wang J, Zhao F, Li P, Wang L. Unidirectional water transport on a two-dimensional hydrophilic channel with anisotropic superhydrophobic barriers. SOFT MATTER 2021; 17:8153-8159. [PMID: 34525158 DOI: 10.1039/d1sm00697e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many creatures have a unique anisotropic structure and special wettability on their skins, presenting intriguing water transporting properties. Inspired by the biosphere, a two-dimensional titanium dioxide-based hydrophilic channel possessing anisotropic superhydrophobic barriers was synthesized. This channel demonstrates unidirectional water transporting properties. When water is injected into the channel, fluid tends to spread in a specific direction. An asymmetric spreading resistance is generated by the different interaction modes between the liquid and superhydrophobic barriers. The superhydrophobic barriers are designed as two main styles: line and curve. As for line barriers, the included angle between barrier and horizontal is the key parameter for the unidirectional water transporting ability whereas, for curve barriers, the radius is an important variable. The best design scheme for unidirectional water transporting properties could be found by varying the parameters of these two types of barriers in the channel. Overall, this study is expected to have a significant implication in the water transporting field.
Collapse
Affiliation(s)
- Qier An
- School of Aviation, Inner Mongolia University of Technology, 49 Aimin Street, Xincheng District, Hohhot, Inner Mongolia 010051, Inner Mongolia, P. R. China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, School of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China.
| | - Feng Zhao
- Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Cryo-Biomedical Engineering, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
27
|
Suda S, Suda T, Ohmura T, Ichikawa M. Straight-to-Curvilinear Motion Transition of a Swimming Droplet Caused by the Susceptibility to Fluctuations. PHYSICAL REVIEW LETTERS 2021; 127:088005. [PMID: 34477401 DOI: 10.1103/physrevlett.127.088005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In this Letter, a water-in-oil swimming droplet's transition from straight to curvilinear motion is investigated experimentally and theoretically. An analysis of the experimental results and the model reveal that the motion transition depends on the susceptibility of the droplet's direction of movement to external stimuli as a function of environmental parameters such as droplet size. The simplicity of the present experimental system and the model suggests implications for a general class of transitions in self-propelled swimmers.
Collapse
Affiliation(s)
- Saori Suda
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoharu Suda
- Department of Mathematics, Keio University, Yokohama 223-8522, Japan
| | - Takuya Ohmura
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | |
Collapse
|
28
|
McGachy L, Heyda J, Tomas J, Čejková J. Decanol pattern formation over a sessile aqueous decanoate droplet. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
|
30
|
Fujita R, Matsufuji T, Matsuo M, Nakata S. Alternate Route Selection of Self-Propelled Filter Papers Impregnated with Camphor for Two-Branched Water Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7039-7042. [PMID: 34048652 DOI: 10.1021/acs.langmuir.1c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The route selection of self-propelled filter papers impregnated with camphor for two-branched water channels was investigated. The two-branched water channel was composed of a stem channel and two branch channels, and the branch channels were connected to the stem channel at a junction. When a single camphor paper reached the junction from the stem channel, it selected one of the two routes equivalently. Three or five camphor papers which were placed on a stem channel exhibited either alternate or random route selection depending on the characteristic length between the leading and following papers, Lc. That is, the alternate route selection of the camphor papers for the two-branched water channels was observed at Lc ≤ 25 mm. By contrast, the alternate route selection was broken at Lc > 25 mm. The physicochemical meaning of the threshold value, Lth ∼ 26 mm, between the alternate and random route selections was discussed based on the experimental results. In addition, the distribution length of camphor molecules developed from the leading camphor paper and the change in the spatial gradient of surface tension around the junction supports the value of Lth. These results suggest that autonomous phenomena using inanimate self-propelled objects are important to understand collective motion in living organisms.
Collapse
Affiliation(s)
- Risa Fujita
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takero Matsufuji
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Satoshi Nakata
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
31
|
Zhang X, You JB, Arends GF, Qian J, Chen Y, Lohse D, Shaw JM. Propelling microdroplets generated and sustained by liquid-liquid phase separation in confined spaces. SOFT MATTER 2021; 17:5362-5374. [PMID: 33956922 DOI: 10.1039/d1sm00231g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flow transport in confined spaces is ubiquitous in technological processes, ranging from separation and purification of pharmaceutical ingredients by microporous membranes and drug delivery in biomedical treatment to chemical and biomass conversion in catalyst-packed reactors and carbon dioxide sequestration. In this work, we suggest a distinct pathway for enhanced liquid transport in a confined space via propelling microdroplets. These microdroplets can form spontaneously from localized liquid-liquid phase separation as a ternary mixture is diluted by a diffusing poor solvent. High speed images reveal how the microdroplets grow, break up and propel rapidly along the solid surface, with a maximal velocity up to ∼160 μm s-1, in response to a sharp concentration gradient resulting from phase separation. The microdroplet propulsion induces a replenishing flow between the walls of the confined space towards the location of phase separation, which in turn drives the mixture out of equilibrium and leads to a repeating cascade of events. Our findings on the complex and rich phenomena of propelling droplets suggest an effective approach to enhanced flow motion of multicomponent liquid mixtures within confined spaces for time effective separation and smart transport processes.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada. and Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Jae Bem You
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada. and Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gilmar F Arends
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| | - Jiasheng Qian
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| | - Yibo Chen
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands and Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - John M Shaw
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
32
|
Becherová L, Prokopec V, Čejková J. Vibrational spectroscopic analysis of critical micelle concentration in sodium decanoate solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119387. [PMID: 33422883 DOI: 10.1016/j.saa.2020.119387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The presented study is devoted to the investigation of the micellization-induced liquid-liquid fluctuations in sodium decanoate (NaD) aqueous solutions, based on the vibrational spectroscopic study of NaD and the determination of critical micelle concentration (CMC) of this system. At the same time, we focused on monitoring the effect of the addition of decanol to this system and changing its basic parameters from the point of view of CMC. CMC is an important parameter from a practical point of view and a characteristic feature of each micelle-forming compound. Upon analyzing the spectroscopic data we focus our attention mainly on the intensity and band position variations of both the symmetrical and antisymmetrical vibrational modes of CH2 groups situated in the high-frequency part of the spectrum. The study used normal (non-enhanced) Raman spectroscopy with excitation wavelength 785 nm, surface-enhanced Raman spectroscopy (SERS) on large-scaled gold-coated SERS-active substrates and infrared spectral measurements. The results of spectroscopic measurements were supported by tensiometry and potentiometry.
Collapse
Affiliation(s)
- Lucia Becherová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5,166 28, Prague 6, Czechia
| | - Vadym Prokopec
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5,166 28, Prague 6, Czechia
| | - Jitka Čejková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3,166 28, Prague 6, Czechia.
| |
Collapse
|
33
|
Yamada M, Shigemune H, Maeda S, Sawada H. Temperature and Humidity Dependence of Marangoni Convection and Its Effect on the Self-propulsion of an Oil Droplet. CHEM LETT 2021. [DOI: 10.1246/cl.200842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Masato Yamada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroki Shigemune
- Department of Electrical Engineering, School of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Shingo Maeda
- Department of Engineering Science and Mechanics, School of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hideyuki Sawada
- Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
34
|
Abstract
Field-assisted self-assembly, motion, and manipulation of droplets have gained much attention in the past decades. We exhibit an electric field manipulation of the motion of a liquid metal (mercury) droplet submerged in a conductive liquid medium (a solution of sulfuric acid). A mercury droplet moves toward the cathode and its path selection is always given by the steepest descent of the local electric field potential. Utilizing this unique behavior, we present several examples of droplet motions, including maze solving, electro-levitation, and motion on a diverted path between parallel electrodes by controlling the conductivity of the medium. We also present an experimental demonstration of Fermat's principle in a non-optical system, namely a mercury droplet moving along a refracted path between electrodes in a domain having two different conductivities.
Collapse
|
35
|
Tanaka S, Nakata S, Nagayama M. A surfactant reaction model for the reciprocating motion of a self-propelled droplet. SOFT MATTER 2021; 17:388-396. [PMID: 33174574 DOI: 10.1039/d0sm01500h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report herein experimental observations of the reciprocating motion of a self-propelled droplet floating on the surface of an aqueous surfactant solution and a simple reaction model capable of reproducing the observed behavior of the droplet. The reciprocating motion was observed in a quasi-one-dimensional annular channel, so the reciprocation was not caused by reflections at boundaries. To understand the reciprocation, our model assumes a reaction between the surface active substance emitted from the droplet and surfactants dissolved in the aqueous solution. This reaction invokes an inversion of the surface tension gradient and thus the droplet's reciprocation. We show that the model can reproduce experimental results semi-quantitatively using numerical simulations with realistic parameters.
Collapse
Affiliation(s)
- Shinpei Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, N12W7, Kita-Ward Sapporo, 060-0812, Japan
| |
Collapse
|
36
|
Li X, Feng D, Chen L, Weng D, Chen C, Wang J. Tension gradient-driven oil/water interface rapid particle self-assembly and its application in microdroplet motion control. J Colloid Interface Sci 2021; 589:187-197. [PMID: 33460851 DOI: 10.1016/j.jcis.2020.12.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS A binary mixture was used during injection with one water-miscible component and the other water-immiscible, which can help particles to migrate toward and then self-assemble at the interface. EXPERIMENTS The ethanol-tetrachloromethane binary mixture was used to verify the self-assembly method, with the diameter of droplets being about 1 mm. As the ethanol diffused into the colloidal solution, the colloidal particles efficiently moved towards and self-assembled on the oil/water interface, while a colloidal particle film with high-coverage was able to rapidly form on the droplet surface even in an ultra-low concentration colloidal solution. The effects of ethanol concentration and particle concentration on self-assembly were investigated. FINDINGS The driving force for self-assembly originated from the tension gradient generated by ethanol's concentration gradient at the particle/liquid interfaces, where the concentrations of ethanol and the colloidal solution had significant effects on self-assembly. The simulation and calculations results aligned well with experiments, providing the theoretical basis for this self-assembly method. Further, as-prepared magnetic particle-coated droplets transformed into a non-wetting soft solid, which had long lifetimes and could be precisely moved, coalesced, and transferred in various two-dimensional and three-dimensional liquid environments. Thus, wider applications are facilitated, such as droplet transfer, microreactor and other potential fields.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China
| | - Dong Feng
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China
| | - Lei Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China
| | - Ding Weng
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China
| | - Chaolang Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
37
|
Xiao Y, Martino N, Wagner K, Spinks GM, Officer DL, Wagner P. Photocontrolled directional transport using water-in-oil droplets. NEW J CHEM 2021. [DOI: 10.1039/d0nj04913a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photocontrolled directional transport in both 2D and 3D of water-in-oil droplets was achieved by merocyanine/spiropyran photoisomerization in the droplet.
Collapse
Affiliation(s)
- Yang Xiao
- ARC Centre of Excellence for Electromaterials Science
- AIIM Faculty
- Innovation Campus
- University of Wollongong
- North Wollongong
| | - Nicolas Martino
- Intelligent Polymer Research Institute
- AIIM Faculty
- Innovation Campus
- University of Wollongong
- North Wollongong
| | - Klaudia Wagner
- ARC Centre of Excellence for Electromaterials Science
- AIIM Faculty
- Innovation Campus
- University of Wollongong
- North Wollongong
| | - Geoffrey M. Spinks
- ARC Centre of Excellence for Electromaterials Science
- AIIM Faculty
- Innovation Campus
- University of Wollongong
- North Wollongong
| | - David L. Officer
- ARC Centre of Excellence for Electromaterials Science
- AIIM Faculty
- Innovation Campus
- University of Wollongong
- North Wollongong
| | - Pawel Wagner
- ARC Centre of Excellence for Electromaterials Science
- AIIM Faculty
- Innovation Campus
- University of Wollongong
- North Wollongong
| |
Collapse
|
38
|
Gershenson C, Trianni V, Werfel J, Sayama H. Self-Organization and Artificial Life. ARTIFICIAL LIFE 2020; 26:391-408. [PMID: 32697161 DOI: 10.1162/artl_a_00324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-organization can be broadly defined as the ability of a system to display ordered spatiotemporal patterns solely as the result of the interactions among the system components. Processes of this kind characterize both living and artificial systems, making self-organization a concept that is at the basis of several disciplines, from physics to biology and engineering. Placed at the frontiers between disciplines, artificial life (ALife) has heavily borrowed concepts and tools from the study of self-organization, providing mechanistic interpretations of lifelike phenomena as well as useful constructivist approaches to artificial system design. Despite its broad usage within ALife, the concept of self-organization has been often excessively stretched or misinterpreted, calling for a clarification that could help with tracing the borders between what can and cannot be considered self-organization. In this review, we discuss the fundamental aspects of self-organization and list the main usages within three primary ALife domains, namely "soft" (mathematical/computational modeling), "hard" (physical robots), and "wet" (chemical/biological systems) ALife. We also provide a classification to locate this research. Finally, we discuss the usefulness of self-organization and related concepts within ALife studies, point to perspectives and challenges for future research, and list open questions. We hope that this work will motivate discussions related to self-organization in ALife and related fields.
Collapse
Affiliation(s)
- Carlos Gershenson
- Universidad Nacional Autónoma de México, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Centro de Ciencias de la Complejidad.
- ITMO University
| | - Vito Trianni
- Italian National Research Council, Institute of Cognitive Sciences and Technologies.
| | - Justin Werfel
- Harvard University, Wyss Institute for Biologically Inspired Engineering.
| | - Hiroki Sayama
- Binghamton University, Center for Collective Dynamics of Complex Systems.
- Waseda University, Waseda Innovation Laboratory
| |
Collapse
|
39
|
Zhao J, Santa Chalarca CF, Nunes JK, Stone HA, Emrick T. Self-Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. Macromol Rapid Commun 2020; 41:e2000334. [PMID: 32671939 DOI: 10.1002/marc.202000334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Advanced synthetic materials are needed to produce nano- and mesoscale structures that function autonomously, catalyze reactions, and convert chemical energy into motion. This paper describes supracolloidal fiber-like structures that are composed of self-adhering, or "sticky," oil-in-water emulsion droplets. Polymer zwitterion surfactants serve as the key interfacial components of these materials, enabling multiple functions simultaneously, including acting as droplet-stabilizing surfactants, interdroplet adhesives, and building blocks of the fibers. This fiber motion, a surprising additional feature of these supracolloidal structures, is observed at the air-water interface and hinged on the chemistry of the polymer surfactant. The origin of this motion is hypothesized to involve transport of polymer from the oil-water interface to the air-water interface, which generates a Marangoni (interfacial) stress. Harnessing this fiber motion with functional polymer surfactants, and selection of the oil phase, produced worm-like objects capable of rotation, oscillation, and/or response to external fields. Overall, these supracolloidal fibers fill a design gap between self-propelled nano/microscale particles and macroscale motors, and have the potential to serve as new components of soft, responsive materials structures.
Collapse
Affiliation(s)
- Jing Zhao
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Janine K Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Todd Emrick
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
40
|
Holler S, Hanczyc MM. Autoselective transport of mammalian cells with a chemotactic droplet. Sci Rep 2020; 10:5525. [PMID: 32218452 PMCID: PMC7099059 DOI: 10.1038/s41598-020-62325-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
Liquid chemical droplets, as models of artificial life, when pushed away from equilibrium possess some life-like behaviors such as fission, fusion, movement and chemotaxis. Chemotaxis, directed motion in response to external gradients, is typically an important process in living systems, but certain artificial systems are also capable of this activity. Previously it was shown that droplet-based chemotactic systems when interfaced with biological systems can act as transporters to move cargo such as hydrogel alginate capsules containing living cells. Here the effectiveness of our system to transport different mammalian cell lines (H460, H1299, A549, HEK293T and HS68) was tested. It was discovered that some lung cancer cell lines release surfactants only when placed in the hydrogel capsules. These surfactants establish the interface between the encapsulated cells and the droplet and also support the chemotaxis of the droplet. Because of this, the droplet-mediated transport system is selective for living cells that produce biosurfactants. This is an example of how the integration of artificial life and biological life could be designed where the systems augment each other and function together as a unit. In this case the living system produces the surfactants that the droplet needs for cargo transport and the artificial system provides the transport for the otherwise sessile mammalian cells. Future applications of droplet-based cell handling that is able to distinguish between cells based not only on viability but cell type, developmental stage or other quantifiable traits are considered.
Collapse
Affiliation(s)
- Silvia Holler
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Chemical and Biological Engineering, University of New Mexico, MSC01 1120, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
41
|
Adamatzky A, Chiolerio A, Szaciłowski K. Liquid metal droplet solves maze. SOFT MATTER 2020; 16:1455-1462. [PMID: 31976998 DOI: 10.1039/c9sm01806a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A room temperature liquid metal features a melting point around room temperature. We use liquid metal gallium due to its non-toxicity. A physical maze is a connected set of Euclidean domains separated by impassable walls. We demonstrate that a maze filled with sodium hydroxide solution is solved by a gallium droplet when direct current is applied between start and destination loci. During the maze solving the droplet stays compact due to its large surface tension, navigates along lines of the highest electrical current density due its high electrical conductivity, and goes around corners of the maze's corridors due to its high conformability. The droplet maze solver has a long life-time due to the negligible vapour tension of liquid gallium and its corrosion resistance and its operation enables computational schemes based on liquid state devices.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, Department of Computer Science and Creative Technologies, University of the West of England, Bristol BS16 1QY, UK.
| | | | | |
Collapse
|
42
|
Koyano Y, Kitahata H, Nakata S, Gorecki J. On a simple model that explains inversion of a self-propelled rotor under periodic stop-and-release-operations. CHAOS (WOODBURY, N.Y.) 2020; 30:023105. [PMID: 32113248 DOI: 10.1063/1.5140626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
We propose a simple mathematical model that describes the time evolution of a self-propelled object on a liquid surface using variables such as object location, surface concentration of active molecules, and hydrodynamic surface flow. The model is applied to simulate the time evolution of a rotor composed of a polygonal plate with camphor pills at its corners. We have qualitatively reproduced results of experiments, in which the inversion of rotational direction under periodic stop-and-release-operations was investigated. The model correctly describes the probability of the inversion as a function of the duration of the phase when the rotor is stopped. Moreover, the model allows to introduce the rotor asymmetry unavoidable in real experiments and study its influence on the studied phenomenon. Our numerical simulations have revealed that the probability of the inversion of rotational direction is determined by the competition among the transport of the camphor molecules by the flow, the intrinsic asymmetry of the rotor, and the noise amplitude.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
43
|
Abstract
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| |
Collapse
|
44
|
Thompson B, Burt K, Lee A, Lingard K, Maurer SE. Partitioning of amino acids and proteins into decanol using phase transfer agents towards understanding life in non-polar liquids. Sci Rep 2019; 9:17750. [PMID: 31780746 PMCID: PMC6882823 DOI: 10.1038/s41598-019-54322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/17/2019] [Indexed: 11/21/2022] Open
Abstract
Water has many roles in the context of life on Earth, however throughout the universe, other liquids may be able to support the emergence of life. We looked at the ability of amino acids, peptides, a depsipeptide, and proteins to partition into a non-polar decanol phase, with and without the addition of a phase transfer agent. Partitioning evaluated using UV detection, or with HPLC coupled to either charged aerosol detection or ESI-MS. For amino acids and short peptides, phase transfer agents were used to move the biomolecules to the decanol phase, and this transfer was pH dependent. For larger molecules, phase transfer agents did not seem to affect the transfer. Both the depsipetide, valinomycin, and the protein Taq DNA polymerase had solubility in the decanol phase. Additionally, valinomycin appeared to retain its biological ability to bind to potassium ions. These results show that most terrestrial biological molecules are not compatible with non-polar solvents, but it is possible to find and perhaps evolve polymers that are functional in such phases.
Collapse
Affiliation(s)
- Brooke Thompson
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT, 06050, USA
| | - Kayla Burt
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT, 06050, USA
| | - Andrew Lee
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT, 06050, USA
| | - Kyle Lingard
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT, 06050, USA
| | - Sarah E Maurer
- Department of Chemistry and Biochemistry, Central Connecticut State University, New Britain, CT, 06050, USA.
| |
Collapse
|
45
|
Santiago I, Simmel FC. Self-Propulsion Strategies for Artificial Cell-Like Compartments. NANOMATERIALS 2019; 9:nano9121680. [PMID: 31775256 PMCID: PMC6956199 DOI: 10.3390/nano9121680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Reconstitution of life-like properties in artificial cells is a current research frontier in synthetic biology. Mimicking metabolism, growth, and sensing are active areas of investigation; however, achieving motility and directional taxis are also challenging in the context of artificial cells. To tackle this problem, recent progress has been made that leverages the tools of active matter physics in synthetic biology. This review surveys the most significant achievements in designing motile cell-like compartments. In this context, strategies for self-propulsion are summarized, including, compartmentalization of catalytically active particles, phoretic propulsion of vesicles and emulsion droplet motion driven by Marangoni flows. This work showcases how the realization of motile protocells may impact biomedical engineering while also aiming at answering fundamental questions in locomotion of prebiotic cells.
Collapse
|
46
|
Sato S, Sakuta H, Sadakane K, Yoshikawa K. Self-Synchronous Swinging Motion of a Pair of Autonomous Droplets. ACS OMEGA 2019; 4:12766-12770. [PMID: 31460400 PMCID: PMC6682140 DOI: 10.1021/acsomega.9b01533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Synchronized motion between two self-running oil droplets floating on an aqueous phase is reported. We describe the results of our observation on the interference between a pair of centimeter-sized nitrobenzene droplets undergoing back-and-forth motion on a waterway. The two droplets exhibit a swinging type of synchronization when a thin glass capillary is placed at the midpoint of the waterway with a narrow rectangle shape. Furthermore, 2:1 synchronized oscillation of the periodicities of this back-and-forth motion is generated when the capillary is shifted away from the center of the waterway. We discuss the mechanism of the emergence of synchronized swinging motion for the pair of droplets based on a simple mathematical model with nonlinear coupled differential equations.
Collapse
|
47
|
Abstract
A substrate does not have to be solid to compute. It is possible to make a computer purely from a liquid. I demonstrate this using a variety of experimental prototypes where a liquid carries signals, actuates mechanical computing devices and hosts chemical reactions. We show hydraulic mathematical machines that compute functions based on mass transfer analogies. I discuss several prototypes of computing devices that employ fluid flows and jets. They are fluid mappers, where the fluid flow explores a geometrically constrained space to find an optimal way around, e.g. the shortest path in a maze, and fluid logic devices where fluid jet streams interact at the junctions of inlets and results of the computation are represented by fluid jets at selected outlets. Fluid mappers and fluidic logic devices compute continuously valued functions albeit discretized. There is also an opportunity to do discrete operation directly by representing information by droplets and liquid marbles (droplets coated by hydrophobic powder). There, computation is implemented at the sites, in time and space, where droplets collide one with another. The liquid computers mentioned above use liquid as signal carrier or actuator: the exact nature of the liquid is not that important. What is inside the liquid becomes crucial when reaction-diffusion liquid-phase computing devices come into play: there, the liquid hosts families of chemical species that interact with each other in a massive-parallel fashion. I shall illustrate a range of computational tasks, including computational geometry, implementable by excitation wave fronts in nonlinear active chemical medium. The overview will enable scientists and engineers to understand how vast is the variety of liquid computers and will inspire them to design their own experimental laboratory prototypes. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, University of the West of England, Bristol, UK
| |
Collapse
|
48
|
Čejková J, Schwarzenberger K, Eckert K, Tanaka S. Dancing performance of organic droplets in aqueous surfactant solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Plutnar J, Pumera M. Chemotactic Micro‐ and Nanodevices. Angew Chem Int Ed Engl 2019; 58:2190-2196. [DOI: 10.1002/anie.201809101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Plutnar
- Department of Inorganic ChemistryUniversity of Chemistry and Technology in Prague Technická 5 Prague 166 28 Czech Republic
| | - Martin Pumera
- Department of Inorganic ChemistryUniversity of Chemistry and Technology in Prague Technická 5 Prague 166 28 Czech Republic
| |
Collapse
|
50
|
Affiliation(s)
- Jan Plutnar
- Department of Inorganic Chemistry; University of Chemistry and Technology in Prague; Technická 5 Prague 166 28 Tschechische Republik
| | - Martin Pumera
- Department of Inorganic Chemistry; University of Chemistry and Technology in Prague; Technická 5 Prague 166 28 Tschechische Republik
| |
Collapse
|