1
|
The Role of Chromium on the Structural, Electronic and Photoluminescence properties of Alumina: Theoretical and Experimental Study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Yang X, Maleki A, Lipey NA, Zheng X, Santiago M, Connor M, Sreenivasan VKA, Dawes JM, Lu Y, Zvyagin AV. Lifetime-Engineered Ruby Nanoparticles (Tau-Rubies) for Multiplexed Imaging of μ-Opioid Receptors. ACS Sens 2021; 6:1375-1383. [PMID: 33660984 DOI: 10.1021/acssensors.1c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To address the growing demand for simultaneous imaging of multiple biomarkers in highly scattering media such as organotypic cell cultures, we introduce a new type of photoluminescent nanomaterial termed "tau-ruby" composed of ruby nanocrystals (Al2O3:Cr3+) with tunable emission lifetime. The lifetime tuning range from 2.4 to 3.2 ms was achieved by varying the Cr3+ dopant concentration from 0.8% to 0.2%, affording facile implementation of background-free detection. We developed inexpensive scalable production of tau-ruby characterized by bright emission, narrow spectrum (693 ± 2 nm), and virtually unlimited photostability upon excitation with affordable excitation/detection sources, noncytotoxic and insensitive to microenvironmental fluctuations. By functionalizing the surface of tau-rubies with targeting antibodies, we obtained different biomarkers suitable for multiplexed lifetime imaging. As a proof of principle, three tau-ruby bioprobes, characterized by three mean lifetimes, were deployed to label three μ-opioid receptor species expressed on transfected cancer cells, each fused to a unique epitope, so that three types of cells were lifetime-encoded. Robust decoding of photoluminescent signals that report on each cell type was achieved by using a home-built lifetime imaging system and resulted in high-contrast multiplexed lifetime imaging of the cells.
Collapse
Affiliation(s)
- Xiaohong Yang
- Key Laboratory for Ecological Metallurgy of Multimetallic Minerals, Ministry of Education, School of Metallurgy, Northeastern University, Shenyang, 110819, China
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| | - Alireza Maleki
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| | - Nikolay A. Lipey
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University, Moscow, 115409, Russia
| | - Xianlin Zheng
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Marina Santiago
- Faculty of Medicine, Macquarie University, Sydney, 2109, Australia
| | - Mark Connor
- Faculty of Medicine, Macquarie University, Sydney, 2109, Australia
| | - Varun K. A. Sreenivasan
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, New South Wales 2052, Australia
- Institute of Human Genetics, University of Lübeck, 23568 Lübeck, Germany
| | - Judith M. Dawes
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yiqing Lu
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Andrei V. Zvyagin
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Olenin AY, Lisichkin GV. Surface-Modified Oxide Nanoparticles: Synthesis and Application. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219070168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Sreenivasan VKA, Wan Razali WA, Zhang K, Pillai RR, Saini A, Denkova D, Santiago M, Brown H, Thompson J, Connor M, Goldys EM, Zvyagin AV. Development of Bright and Biocompatible Nanoruby and Its Application to Background-Free Time-Gated Imaging of G-Protein-Coupled Receptors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39197-39208. [PMID: 29022702 DOI: 10.1021/acsami.7b12665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
At the forefront of developing fluorescent probes for biological imaging applications are enhancements aimed at increasing their brightness, contrast, and photostability, especially toward demanding applications of single-molecule detection. In comparison with existing probes, nanorubies exhibit unlimited photostability and a long emission lifetime (∼4 ms), which enable continuous imaging at single-particle sensitivity in highly scattering and fluorescent biological specimens. However, their wide application as fluorescence probes has so far been hindered by the absence of facile methods for scaled-up high-volume production and molecularly specific targeting. The present work encompasses the large-scale production of colloidally stable nanoruby particles, the demonstration of their biofunctionality and negligible cytotoxicity, as well as the validation of its use for targeted biomolecular imaging. In addition, optical characteristics of nanorubies are found to be comparable or superior to those of state-of-the-art quantum dots. Protocols of reproducible and robust coupling of functional proteins to the nanoruby surface are also presented. As an example, NeutrAvidin-coupled nanoruby show excellent affinity and specificity to μ-opioid receptors in fixed and live cells, allowing wide-field imaging of G-protein coupled receptors with single-particle sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Avishkar Saini
- Robinson Research Institute and Centre for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide , Adelaide, South Australia 5005, Australia
| | | | | | - Hannah Brown
- Robinson Research Institute and Centre for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide , Adelaide, South Australia 5005, Australia
| | - Jeremy Thompson
- Robinson Research Institute and Centre for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide , Adelaide, South Australia 5005, Australia
| | | | | | - Andrei V Zvyagin
- Institute of Molecular Medicine, Sechenov First Moscow State University , Moscow 119991, Russia
- Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University , Nizhny Novgorod 603022, Russia
| |
Collapse
|
5
|
Lucchini MA, Tervoort E, Tarik M, Niederberger M. Tailoring the phase of Li–Al–O nanoparticles by nonaqueous sol–gel chemistry. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2017; 82:739-747. [DOI: 10.1007/s10971-017-4360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Moeez S, Siddiqui EA, Khan S, Ahmad A. Size Reduction of Bulk Alumina for Mass Production of Fluorescent Nanoalumina by Fungus Humicola sp. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1195-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Jin X, Cai W, Cai Z. Amino organosilane grafted ordered mesoporous alumina with enhanced adsorption performance towards Cr(vi). RSC Adv 2017. [DOI: 10.1039/c7ra10933d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Amino organosilane N-(β-aminoethyl)-γ-aminopropylmethylbimethoxysilane (2N) functionalized ordered mesoporous aluminas (MA–2N) with enhanced adsorption performance towards Cr(vi) were successfully prepare by a facile grafting method.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry
- Chemical Engineering and Life Sciences
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
| | - Weiquan Cai
- School of Chemistry
- Chemical Engineering and Life Sciences
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
| | - Zhijun Cai
- International School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| |
Collapse
|
8
|
Razali WAW, Sreenivasan VKA, Bradac C, Connor M, Goldys EM, Zvyagin AV. Wide-field time-gated photoluminescence microscopy for fast ultrahigh-sensitivity imaging of photoluminescent probes. JOURNAL OF BIOPHOTONICS 2016; 9:848-858. [PMID: 27264934 DOI: 10.1002/jbio.201600050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluorescence microscopy is a fundamental technique for the life sciences, where biocompatible and photostable photoluminescence probes in combination with fast and sensitive imaging systems are continually transforming this field. A wide-field time-gated photoluminescence microscopy system customised for ultrasensitive imaging of unique nanoruby probes with long photoluminescence lifetime is described. The detection sensitivity derived from the long photoluminescence lifetime of the nanoruby makes it possible to discriminate signals from unwanted autofluorescence background and laser backscatter by employing a time-gated image acquisition mode. This mode enabled several-fold improvement of the photoluminescence imaging contrast of discrete nanorubies dispersed on a coverslip. It enabled recovery of the photoluminescence signal emanating from discrete nanorubies when covered by a layer of an organic fluorescent dye, which were otherwise invisible without the use of spectral filtering approaches. Time-gated imaging also facilitated high sensitivity detection of nanorubies in a biological environment of cultured cells. Finally, we monitor the binding kinetics of nanorubies to a functionalised substrate, which exemplified a real-time assay in biological fluids. 3D-pseudo colour images of nanorubies immersed in a highly fluorescent dye solution. Nanoruby photoluminescence is subdued by that of the dye in continuous excitation/imaging (left), however it can be recovered by time-gated imaging (right). At the bottom is schematic diagram of nanoruby assay in a biological fluid.
Collapse
Affiliation(s)
- Wan A W Razali
- MQ Photonics Research Centre, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
- Department of Physics, Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400, Jengka, Pahang, Malaysia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Varun K A Sreenivasan
- MQ Photonics Research Centre, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Carlo Bradac
- ARC Centre of Excellence for Engineered Quantum Systems (EQuS), Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ewa M Goldys
- MQ Photonics Research Centre, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Andrei V Zvyagin
- MQ Photonics Research Centre, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
- Laboratory of Optical Theranostics, N.I. Lobachevsky Nizhny Novgorod State University, 603950, Nizhny Novgorod, Russia.
| |
Collapse
|
9
|
Zeng C, Lu S, Song L, Xiao X, Gao J, Pan L, He Z, Yu J. Enhanced thermal properties in a hybrid graphene–alumina filler for epoxy composites. RSC Adv 2015. [DOI: 10.1039/c5ra01967b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inclusion of hybrid LCPBI/RGO and Al2O3-APS fillers into a polymer matrix with formation of composites has proven to be an efficient way to improve thermal properties of the composites.
Collapse
Affiliation(s)
- Cen Zeng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Laifu Song
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Xiane Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Jian Gao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Zihai He
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| | - Jinhong Yu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin 541004
| |
Collapse
|