1
|
Schott M, Repetto L, Savio RL, Firpo G, Angeli E, Valbusa U. Identification of the seeding mechanism in the spinodal instability of dewetting liquids. J Colloid Interface Sci 2022; 632:65-73. [DOI: 10.1016/j.jcis.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
2
|
Murmu K, Pandey A, Roy P, Deb A, Gooh Pattader PS. Janus micro‐thread to micro‐nanodroplets using dynamic contact line lithography. J Appl Polym Sci 2022. [DOI: 10.1002/app.52490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kaniska Murmu
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Ankur Pandey
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Pritam Roy
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati India
| | - Aniruddha Deb
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati India
- School of Health Science and Technology Indian Institute of Technology Guwahati Guwahati India
| |
Collapse
|
3
|
Chiu M, Wood JA, Widmer-Cooper A, Neto C. Aligned Droplet Patterns by Dewetting of Polymer Bilayers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Chiu
- School of Chemistry and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jared A. Wood
- School of Chemistry and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Asaph Widmer-Cooper
- School of Chemistry and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chiara Neto
- School of Chemistry and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Kim T, Kim W. Viscous dewetting of metastable liquid films on substrates with microgrooves. J Colloid Interface Sci 2018. [DOI: 10.1016/j.jcis.2018.02.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Xu L, Chen Z, Zou Z. Dewetting of a pre-patterned thin polymer bilayer: influence of the instability mode. RSC Adv 2017. [DOI: 10.1039/c7ra03506c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different surface structures are fabricated via adjusting the instability mode from a thermodynamically controlled one to a kinetically controlled one.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Zhengjian Chen
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- P. R. China
| |
Collapse
|
6
|
Zhang H, Xu L, Xu Y, Huang G, Zhao X, Lai Y, Shi T. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate. Sci Rep 2016; 6:38337. [PMID: 27922062 PMCID: PMC5138605 DOI: 10.1038/srep38337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 01/10/2023] Open
Abstract
We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 107). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.
Collapse
Affiliation(s)
- Huanhuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Laboratory of Surface Physics and Chemistry, Guizhou Education University, Guiyang 550018, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Xu
- Laboratory of Surface Physics and Chemistry, Guizhou Education University, Guiyang 550018, P. R. China
| | - Yabo Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gang Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueyu Zhao
- School of Chemistry and Life Sciences, Guizhou Education University, Guiyang 550018, P. R. China
| | - Yuqing Lai
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
7
|
|
8
|
Hens A, Mondal K, Biswas G, Bandyopadhyay D. Pathways from disordered to ordered nanostructures from defect guided dewetting of ultrathin bilayers. J Colloid Interface Sci 2016; 465:128-39. [DOI: 10.1016/j.jcis.2015.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
|
9
|
Bhandaru N, Das A, Mukherjee R. Confinement induced ordering in dewetting of ultra-thin polymer bilayers on nanopatterned substrates. NANOSCALE 2016; 8:1073-1087. [PMID: 26658720 DOI: 10.1039/c5nr06690e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the dewetting of a thin bilayer of polystyrene (PS) and poly(methylmethacrylate) (PMMA) on a topographically patterned nonwettable substrate comprising an array of pillars, arranged in a square lattice. With a gradual increase in the concentration of the PMMA solution (Cn-PMMA), the morphology of the bottom layer changes to: (1) an aligned array of spin dewetted droplets arranged along substrate grooves at very low Cn-PMMA; (2) an interconnected network of threads surrounding each pillar at intermediate Cn-PMMA; and (3) a continuous bottom layer at higher Cn-PMMA. On the other hand the morphology of the PS top layer depends largely on the nature of the pre-existing bottom layer, in addition to Cn-PS. An ordered array of PMMA core-PS shell droplets forms right after spin coating when both Cn-PMMA and Cn-PS are very low. Bilayers with all other initial configurations evolve during thermal annealing, resulting in a variety of ordered structures. Unique morphologies realized include laterally coexisting structures of the two polymers confined within the substrate grooves due to initial rupture of the bottom layer on the substrate followed by a squeezing flow of the top layer; an array of core-shell and single polymer droplets arranged in an alternating order etc., to highlight a few. Such structures cannot be fabricated by any stand-alone lithography technique. On the other hand, in some cases the partially dewetted bottom layer imparts stability to an intact top PS layer against dewetting. Apart from ordering, under certain specific conditions significant miniaturization and downsizing of dewetted feature periodicity and dimension as compared to dewetting of a single layer on a flat substrate is observed. With the help of a morphology phase diagram we show that ordering is achieved over a wide combination of Cn-PMMA and Cn-PS, though the morphology and dewetting pathway differs significantly with variation in the thickness of the individual layers.
Collapse
Affiliation(s)
- Nandini Bhandaru
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Pin 721302, India.
| | - Anuja Das
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Pin 721302, India.
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, Pin 721302, India.
| |
Collapse
|
10
|
Mukherjee R, Sharma A. Instability, self-organization and pattern formation in thin soft films. SOFT MATTER 2015; 11:8717-8740. [PMID: 26412507 DOI: 10.1039/c5sm01724f] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The free surface of a thin soft polymer film is often found to become unstable and self-organizes into various meso-scale structures. In this article we classify the instability of a thin polymer film into three broad categories, which are: category 1: instability of an ultra-thin (<100 nm) viscous film engendered by amplification of thermally excited surface capillary waves due to interfacial dispersive van der Waals forces; category 2: instability arising from the attractive inter-surface interactions between the free surface of a soft film exhibiting room temperature elasticity and another rigid surface in its contact proximity; and category 3: instability caused by an externally applied field such as an electric field or a thermal gradient, observed in both viscous and elastic films. We review the salient features of each instability class and highlight how characteristic length scales, feature morphologies, evolution pathways, etc. depend on initial properties such as film thickness, visco-elasticity (rheology), residual stress, and film preparation conditions. We emphasize various possible strategies for aligning and ordering of the otherwise isotropic structures by combining the essential concepts of bottom-up and top-down approaches. A perspective, including a possible future direction of research, novelty and limitations of the methods, particularly in comparison to the existing patterning techniques, is also presented for each setting.
Collapse
Affiliation(s)
- Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721 302, India.
| | - Ashutosh Sharma
- Department of Chemical Engineering and Nano-science Center, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
11
|
Bhandaru N, Das A, Salunke N, Mukherjee R. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting. NANO LETTERS 2014; 14:7009-16. [PMID: 25420041 DOI: 10.1021/nl5033205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a facile technique for fabricating an ordered array of nearly equal-sized mesoscale polymer droplets of two constituent polymers (polystyrene, PS and poly(methyl methacrylate), PMMA) arranged in an alternating manner on a topographically patterned substrate. The self-organized array of binary polymers is realized by sequential spin dewetting. First, a dilute solution of PMMA is spin-dewetted on a patterned substrate, resulting in an array of isolated PMMA droplets arranged along the substrate grooves due to self-organization during spin coating itself. The sample is then silanized with octadecyltrichlorosilane (OTS), and subsequently, a dilute solution of PS is spin-coated on to it, which also undergoes spin dewetting. The spin-dewetted PS drops having a size nearly equal to the pre-existing PMMA droplets position themselves between two adjacent PMMA drops under appropriate conditions, forming an alternating binary polymer droplet array. The alternating array formation takes place for a narrow range of solution concentration for both the polymers and depends on the geometry of the substrate. The size of the droplets depends on the extent of confinement, and droplets as small as 100 nm can be obtained by this method, on a suitable template. The findings open up the possibility of creating novel surfaces having ordered multimaterial domains with a potential multifunctional capability.
Collapse
Affiliation(s)
- Nandini Bhandaru
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur , Kharagpur, West Bengal 721302, India
| | | | | | | |
Collapse
|
12
|
Dey M, Bandyopadhyay D, Sharma A, Qian S, Joo SW. Charge Leakage Mediated Pattern Miniaturization in the Electric Field Induced Instabilities of an Elastic Membrane. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500378k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohar Dey
- School
of Mechanical Engineering, Yeungnam University, Gyeongsan 712749, South Korea
| | - Dipankar Bandyopadhyay
- Department
of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Ashutosh Sharma
- Department
of Chemical Engineering, Indian Institute of Technology Kanpur, UP 208016, India
| | - Shizhi Qian
- Department
of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Sang Woo Joo
- School
of Mechanical Engineering, Yeungnam University, Gyeongsan 712749, South Korea
| |
Collapse
|
13
|
Roy S, Biswas D, Salunke N, Das A, Vutukuri P, Singh R, Mukherjee R. Control of Morphology in Pattern Directed Dewetting of a Thin Polymer Bilayer. Macromolecules 2013. [DOI: 10.1021/ma3018525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudeshna Roy
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Debarati Biswas
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Namrata Salunke
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Ajit Das
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Pavanaphani Vutukuri
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Ravdeep Singh
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| | - Rabibrata Mukherjee
- Department of Chemical
Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721
302, India
| |
Collapse
|
14
|
Hens A, Mondal K, Bandyopadhyay D. Self-organized pathways to nanopatterns exploiting the instabilities of ultrathin confined bilayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022405. [PMID: 23496524 DOI: 10.1103/physreve.87.022405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/02/2012] [Indexed: 06/01/2023]
Abstract
Self-organized interfacial instabilities of an ultrathin bilayer confined between a pair of rigid surfaces is explored. The bilayers are classified based on the macroscopic dewetting behaviors of the liquid films sandwiched between a pair of confining surfaces having surface energy higher or lower than the liquid films. Linear and nonlinear analyses employing the governing equations originating from the continuum description together with molecular dynamics (MD) simulations unveil the salient spatiotemporal features of the dewetting process. The study uncovers that, under the destabilizing influence of the intermolecular interactions, the interface of a confined bilayer can deform into interesting embedded and encapsulated patterns with nanoscale periodicity. The continuum and MD simulations collectively show the detailed route to dewetting starting from the formation of holes in the early stage, their growth to achieve equilibrium contact angle at the intermediate phase, and then to evolve into the equilibrium morphologies at the later stage. Examples are shown where the length and the time scales of the simulated nanostructures from both the continuum and MD approaches are found to agree with the same obtained from the linear stability analysis. We also highlight the deviations that are observed in the continuum and MD approaches. The study confirms that the reduced stabilizing interfacial tension at the liquid-liquid interface together with enhanced intermolecular interaction because of the thinness of the layers can be an alternative strategy for pattern miniaturization exploiting the instabilities of a thin confined bilayer. Further, the study shows that use of topographical patterns on the bounding surfaces can impose periodic order to the holes, droplets, columns, and channels, which can find important applications in the diverse areas of nanotechnology.
Collapse
Affiliation(s)
- Abhiram Hens
- Micro System Technology Laboratory, CSIR - Central Mechanical Engineering Research Institute, Durgapur-713209, India
| | | | | |
Collapse
|
15
|
Mondal K, Kumar P, Bandyopadhyay D. Electric field induced instabilities of thin leaky bilayers: Pathways to unique morphologies and miniaturization. J Chem Phys 2013; 138:024705. [DOI: 10.1063/1.4773857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Roy S, Mukherjee R. Ordered to isotropic morphology transition in pattern-directed dewetting of polymer thin films on substrates with different feature heights. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5375-85. [PMID: 22999159 DOI: 10.1021/am301311d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Controlled dewetting of a thin polymer film on a topographically patterned substrate is an interesting approach for aligning isotropic dewetted structures. In this article, we investigate the influence of substrate feature height (H(S)) on the dewetting pathway and final pattern morphology by studying the dewetting of polystyrene (PS) thin films on grating substrates with identical periodicity (λ(P) = 1.5 μm), but H(S) varying between 10 nm and 120 nm. We identify four distinct categories of final dewetted morphology, with different extent of ordering: (1) array of aligned droplets (H(S) ≈ 120 nm); (2) aligned undulating ribbons (H(S) ≈ 70-100 nm); (3) multilength scale structures with coexisting large droplets uncorrelated to the substrate and smaller droplets/ribbons aligned along the stripes (H(S) ≈ 40-60 nm); and (4) large droplets completely uncorrelated to the substrate (H(S) < 25 nm). The distinct morphologies across the categories are attributed to two major factors: (a) whether the as-cast film is continuous (H(S)≤ 80 nm) or discontinuous (H(S)≥ 100 nm) and (b) in case of a continuous film, whether the film ruptures along each substrate stripe (H(S)≥ 70 nm) or with nucleation of random holes that are not correlated to the substrate features (H(S)≤ 60 nm). While the ranges of H(S) values indicated in the parentheses are valid for PS films with an equivalent thickness (h(E)) ≈ 50.3 nm on a flat substrate, a change in h(E) merely alters the cut-off values of H(S), as the final dewetted morphologies and transition across categories remain generically unaltered. We finally show that the structures obtained by dewetting on different H(S) substrates exhibits different levels of hydrophobicity because of combined spatial variation of chemical and topographic contrast along the surface. Thus, the work reported in this article can find potential application in fabricating surfaces with controlled wettability.
Collapse
Affiliation(s)
- Sudeshna Roy
- Department of Chemical Engineering, Indian Institute of Technology-Kharagpur, West Bengal, 721 302, India
| | | |
Collapse
|
17
|
Patil S, Mangal R, Malasi A, Sharma A. Biomimetic wet adhesion of viscoelastic liquid films anchored on micropatterned elastic substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14784-14791. [PMID: 23035779 DOI: 10.1021/la302460y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inspired by the natural adhesives in the toe pads of arthropods and some other animals, we explore the effectiveness and peel failure of a thin viscoelastic liquid film anchored on a micropatterned elastic surface. In particular, we focus on the role of the substrate pattern in adhesion energy of the liquid layer and in allowing its clean separation without cohesive failure. Peel tests on the microfabricated wet adhesives showed two distinct modes of adhesive (interfacial) and cohesive (liquid bulk) failures depending on the pattern dimensions. The adhesion energy of a viscoelastic liquid layer on an optimized micropatterned elastic substrate is ~3.5 times higher than that of a control flat bilayer and ~26 times higher than that of a viscoelastic film on a rigid substrate. Adhesive liquid layers anchored by narrow microchannels undergo clean, reversible adhesive failure rather than the cohesive failure seen on flat substrates. An increase in the channel width engenders cohesive failure in which droplets of the wet adhesive remain on the peeled surface.
Collapse
Affiliation(s)
- Sandip Patil
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur-208016, U.P., India
| | | | | | | |
Collapse
|
18
|
Dey M, Bandyopadhyay D, Sharma A, Qian S, Joo SW. Electric-field-induced interfacial instabilities of a soft elastic membrane confined between viscous layers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041602. [PMID: 23214594 DOI: 10.1103/physreve.86.041602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Indexed: 06/01/2023]
Abstract
We explore the electric-field-induced interfacial instabilities of a trilayer composed of a thin elastic film confined between two viscous layers. A linear stability analysis (LSA) is performed to uncover the growth rate and length scale of the different unstable modes. Application of a normal external electric field on such a configuration can deform the two coupled elastic-viscous interfaces either by an in-phase bending or an antiphase squeezing mode. The bending mode has a long-wave nature, and is present even at a vanishingly small destabilizing field. In contrast, the squeezing mode has finite wave-number characteristics and originates only beyond a threshold strength of the electric field. This is in contrast to the instabilities of the viscous films with multiple interfaces where both modes are found to possess long-wave characteristics. The elastic film is unstable by bending mode when the stabilizing forces due to the in-plane curvature and the elastic stiffness are strong and the destabilizing electric field is relatively weak. In comparison, as the electric field increases, a subdominant squeezing mode can also appear beyond a threshold destabilizing field. A dominant squeezing mode is observed when the destabilizing field is significantly strong and the elastic films are relatively softer with lower elastic modulus. In the absence of liquid layers, a free elastic film is also found to be unstable by long-wave bending and finite wave-number squeezing modes. The LSA asymptotically recovers the results obtained by the previous formulations where the membrane bending elasticity is approximately incorporated as a correction term in the normal stress boundary condition. Interestingly, the presence of a very weak stabilizing influence due to a smaller interfacial tension at the elastic-viscous interfaces opens up the possibility of fabricating submicron patterns exploiting the instabilities of a trilayer.
Collapse
Affiliation(s)
- Mohar Dey
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| | | | | | | | | |
Collapse
|
19
|
Roy S, Ansari KJ, Jampa SSK, Vutukuri P, Mukherjee R. Influence of substrate wettability on the morphology of thin polymer films spin-coated on topographically patterned substrates. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1887-1896. [PMID: 22468781 DOI: 10.1021/am300201a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We show that the morphology of a thin polymer film spin coated directly on to a topographically patterned substrate is strongly influenced by the wettability of the substrate, in addition to other well-known parameters such as concentration of the polymer solution (c(n)), spin speed (RPM), and spin duration. Similar to spin coating on a flat surface, (1, 2) on a topographically patterned substrate as well, a continuous film forms only above a critical polymer solution concentration (c(t)*), for a specific RPM and dispensed drop volume. It is believed that for c(n) > c(t)*, the resulting continuous film on a topographically patterned substrate has an undulating top surface, where the surface undulations are in phase with the underlying substrate patterns. (3) On the basis of experiments involving spin coating of polymer thin films on topographically patterned grating substrates, we show that the surface undulations on the film are in phase with the substrate patterns only when the substrate is completely wetted (CW) by the solvent. In contrast, when the substrate is partially wetted (PW) by the solvent, then the undulations are 180° out of phase with respect to the substrate patterns. We further show that for c(n) < c(t)*, a variety of ordered and disordered structures, like array of aligned droplets, isolated strips of polymers, etc., result on both CW and PW substrates, depending on c(n).
Collapse
Affiliation(s)
- Sudeshna Roy
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, India
| | | | | | | | | |
Collapse
|
20
|
Xu L, Sharma A, Joo SW. Growth of Noncircular and Faceted Holes in Liquid–Liquid Dewetting of Thin Polymer Bilayers. Macromolecules 2011. [DOI: 10.1021/ma201538p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Xu
- School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, South Korea
| | - Ashutosh Sharma
- School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, South Korea
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sang W. Joo
- School of Mechanical Engineering, Yeungnam University, Gyongsan 712-749, South Korea
| |
Collapse
|
21
|
Xu L, Bandyopadhyay D, Shi T, An L, Sharma A, Joo SW. Dewetting kinetics of thin polymer bilayers: Role of under layer. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
|
23
|
Srivastava S, Bandyopadhyay D, Sharma A. Embedded microstructures by electric-field-induced pattern formation in interacting thin layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10943-10952. [PMID: 20481464 DOI: 10.1021/la100968p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electric-field-induced interfacial instabilities and pattern formation in a pair of interacting thin films are analyzed on the basis of linear stability analysis and long-wave nonlinear simulations. The films are coated onto two parallel plate electrodes and separated by an air gap between them. A linear stability analysis (LSA) is carried out for viscoelastic films to show that the ratios of material properties to films thickness control the length scale and timescale significantly and the presence of the second layer increases the overall capacitance and thus can lead to a smaller length scale as compared to the instability in a single film. Long-wave nonlinear analysis for interacting viscous layers indicates that the instabilities are always initiated by the antiphase squeezing rather than the in-phase bending mode of deformation at the interfaces. Nonlinear simulations on patterned electrodes show that this novel geometry for electric field patterning can be employed to generate intricate, embedded 3-D periodic patterns and to miniaturize patterns. Simulations are presented for e-molding of a number of periodic self-organized patterns such as pincushion structures, straight/corrugated embedded microchannels, and microbubbles. A few interesting examples are also shown where (1) the pathway of evolution changes without altering the equilibrium morphology when kinetic parameters such as viscous forces are changed and (2) the self-organized equilibrium morphology does not reproduce the underlying patterns on the electrodes.
Collapse
Affiliation(s)
- Samanvaya Srivastava
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India
| | | | | |
Collapse
|
24
|
Srivastava S, Reddy PDS, Wang C, Bandyopadhyay D, Sharma A. Electric field induced microstructures in thin films on physicochemically heterogeneous and patterned substrates. J Chem Phys 2010; 132:174703. [DOI: 10.1063/1.3400653] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|