1
|
Polanowski P, Sikorski A. Monte Carlo Simulations of Polymer Collapse in an Explicit Solvent of Varying Quality. Polymers (Basel) 2025; 17:978. [PMID: 40219366 PMCID: PMC11991173 DOI: 10.3390/polym17070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The behavior of a single homopolymer chain in an explicit solvent in a wide range of poor and good solvents was investigated. For this purpose, a two-dimensional coarse-grained model based on a triangular lattice was used. Simulations were carried out by the Monte Carlo method using the Cooperative Motion Algorithm to study high-density systems. The scaling relations of the parameters describing the phase transitions of the chain were determined. For systems with polymer-solvent attraction, significant changes in chain size and shape were observed. This was associated with the mechanism of chain penetration by solvents and the formation of structures via a mechanism called 'Bridging-Induced Attraction', similar to those discovered for three dimensions.
Collapse
Affiliation(s)
- Piotr Polanowski
- Department of Molecular Physics, Technical University of Łódź, 90-924 Łódź, Poland;
| | - Andrzej Sikorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Yuan J, Tanaka H. Impact of Hydrodynamic Interactions on the Kinetic Pathway of Protein Folding. PHYSICAL REVIEW LETTERS 2024; 132:138402. [PMID: 38613272 DOI: 10.1103/physrevlett.132.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein. Our results reveal that HI helps select fast folding pathways to the native state without being kinetically trapped, significantly speeding up the folding kinetics compared to its absence. First, the directional flow along the protein backbone expedites protein collapse. Then, the incompressibility-induced squeezing flow effects retard the accumulation of non-native hydrophobic contacts, thus preventing the protein from being trapped in local energy minima during the conformational search of the native structure. We also find that the significance of HI in folding kinetics depends on temperature, with a pronounced effect under biologically relevant conditions. Our findings suggest that HI, particularly the short-range squeezing effect, may be crucial in avoiding protein misfolding.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Polanowski P, Sikorski A. Coil-globule transition in two-dimensional polymer chains in an explicit solvent. SOFT MATTER 2023; 19:7979-7987. [PMID: 37818732 DOI: 10.1039/d3sm00975k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The structure of two-dimensional polymer chains in a solvent at different temperatures is still far from being fully understood. Computer simulations of high-density macromolecular systems require the use of appropriate algorithms, and therefore the simulations were carried out using the Cooperative Motion Algorithm. The polymer model studied was exactly two-dimensional, coarse-grained and based on a triangular lattice. The theta temperature and temperature of coil-to-globule transition, and critical exponents were determined. The differences between the structure of such a disk and that of a chain in a dense polymer liquid were shown.
Collapse
Affiliation(s)
- Piotr Polanowski
- Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-543 Łódź, Poland
| | - Andrzej Sikorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Kumari K, Ravi Prakash J, Padinhateeri R. Heterogeneous interactions and polymer entropy decide organization and dynamics of chromatin domains. Biophys J 2022; 121:2794-2812. [PMID: 35672951 PMCID: PMC9382282 DOI: 10.1016/j.bpj.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
Chromatin is known to be organized into multiple domains of varying sizes and compaction. While these domains are often imagined as static structures, they are highly dynamic and show cell-to-cell variability. Since processes such as gene regulation and DNA replication occur in the context of these domains, it is important to understand their organization, fluctuation, and dynamics. To simulate chromatin domains, one requires knowledge of interaction strengths among chromatin segments. Here, we derive interaction-strength parameters from experimentally known contact maps and use them to predict chromatin organization and dynamics. Taking two domains on the human chromosome as examples, we investigate its three-dimensional organization, size/shape fluctuations, and dynamics of different segments within a domain, accounting for hydrodynamic effects. Considering different cell types, we quantify changes in interaction strengths and chromatin shape fluctuations in different epigenetic states. Perturbing the interaction strengths systematically, we further investigate how epigenetic-like changes can alter the spatio-temporal nature of the domains. Our results show that heterogeneous weak interactions are crucial in determining the organization of the domains. Computing effective stiffness and relaxation times, we investigate how perturbations in interactions affect the solid- and liquid-like nature of chromatin domains. Quantifying dynamics of chromatin segments within a domain, we show how the competition between polymer entropy and interaction energy influence the timescales of loop formation and maintenance of stable loops.
Collapse
Affiliation(s)
- Kiran Kumari
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India; Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - J Ravi Prakash
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
5
|
Petrov A, Gavrilov AA, Chertovich A. An exotic microstructured globular state formed by a single multiblock copolymer chain. J Chem Phys 2022; 156:034903. [DOI: 10.1063/5.0072568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Artem Petrov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey A. Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander Chertovich
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| |
Collapse
|
6
|
Dahanayake R, Dormidontova EE. Hydrogen Bonding Sequence Directed Coil-Globule Transition in Water Soluble Thermoresponsive Polymers. PHYSICAL REVIEW LETTERS 2021; 127:167801. [PMID: 34723603 DOI: 10.1103/physrevlett.127.167801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The origin of the coil-globule transition for water-soluble thermoresponsive polymers frequently used in nanomaterials remains elusive. Using polypropylene oxide as an example we demonstrate by means of atomistic molecular dynamics simulations that temperature-induced increase in the sequence length of monomers that are not hydrogen bonded to water drives the coil-globule transition. Longer chains statistically exhibit longer sequences which serve as nucleation sites for hydrophobic cluster formation, facilitating chain collapse at lower temperature in agreement with experimental data.
Collapse
Affiliation(s)
- Rasika Dahanayake
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
7
|
Schneider J, Meinel MK, Dittmar H, Müller-Plathe F. Different Stages of Polymer-Chain Collapse Following Solvent Quenching–Scaling Relations from Dissipative Particle Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jurek Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Melissa K. Meinel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Han Dittmar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| |
Collapse
|
8
|
Abstract
Diffusional motion within the crowded environment of the cell is known to be crucial to cellular function as it drives the interactions of proteins. However, the relationships between protein diffusion, shape and interaction, and the evolutionary selection mechanisms that arise as a consequence, have not been investigated. Here, we study the dynamics of triaxial ellipsoids of equivalent steric volume to proteins at different aspect ratios and volume fractions using a combination of Brownian molecular dynamics and geometric packing. In general, proteins are found to have a shape, approximately Golden in aspect ratio, that give rise to the highest critical volume fraction resisting gelation, corresponding to the fastest long-time self-diffusion in the cell. The ellipsoidal shape also directs random collisions between proteins away from sites that would promote aggregation and loss of function to more rapidly evolving nonsticky regions on the surface, and further provides a greater tolerance to mutation.
Collapse
|
9
|
Majumder S, Hansmann UHE, Janke W. Pearl-Necklace-Like Local Ordering Drives Polypeptide Collapse. Macromolecules 2019; 52:5491-5498. [PMID: 31631912 PMCID: PMC6795215 DOI: 10.1021/acs.macromol.9b00562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/31/2019] [Indexed: 11/30/2022]
Abstract
![]()
The
collapse of the polypeptide backbone is an integral part of
protein folding. Using polyglycine as a probe, we explore the nonequilibrium
pathways of protein collapse in water. We find that the collapse depends
on the competition between hydration effects and intrapeptide interactions.
Once intrapeptide van der Waal interactions dominate, the chain collapses
along a nonequilibrium pathway characterized by formation of pearl-necklace-like
local clusters as intermediates that eventually coagulate into a single
globule. By describing this coarsening through the contact probability
as a function of distance along the chain, we extract a time-dependent
length scale that grows in a linear fashion. The collapse dynamics
is characterized by a dynamical critical exponent z ≈ 0.5 that is much smaller than the values of z = 1–2 reported for nonbiological polymers. This difference
in the exponents is explained by the instantaneous formation of intrachain
hydrogen bonds and local ordering that may be correlated with the
observed fast folding times of proteins.
Collapse
Affiliation(s)
- Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| |
Collapse
|
10
|
Affiliation(s)
- Soumik Mitra
- Department
of Physical Sciences and ‡Centre for Advanced Functional
Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arindam Kundagrami
- Department
of Physical Sciences and ‡Centre for Advanced Functional
Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
11
|
Rissanou AN, Tzeli DS, Anastasiadis SH, Bitsanis IA. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study. J Chem Phys 2014; 140:204904. [DOI: 10.1063/1.4875694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
A coarse-grained protein model in a water-like solvent. Sci Rep 2013; 3:1841. [PMID: 23674146 PMCID: PMC3653448 DOI: 10.1038/srep01841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023] Open
Abstract
Simulations employing an explicit atom description of proteins in solvent can be computationally expensive. On the other hand, coarse-grained protein models in implicit solvent miss essential features of the hydrophobic effect, especially its temperature dependence, and have limited ability to capture the kinetics of protein folding. We propose a free space two-letter protein (“H-P”) model in a simple, but qualitatively accurate description for water, the Jagla model, which coarse-grains water into an isotropically interacting sphere. Using Monte Carlo simulations, we design protein-like sequences that can undergo a collapse, exposing the “Jagla-philic” monomers to the solvent, while maintaining a “hydrophobic” core. This protein-like model manifests heat and cold denaturation in a manner that is reminiscent of proteins. While this protein-like model lacks the details that would introduce secondary structure formation, we believe that these ideas represent a first step in developing a useful, but computationally expedient, means of modeling proteins.
Collapse
|
13
|
Elcock AH. A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules. J Chem Theory Comput 2013; 9:3224-3239. [PMID: 23914146 DOI: 10.1021/ct400240w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman's Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor.
Collapse
Affiliation(s)
- Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Gillissen MAJ, Terashima T, Meijer EW, Palmans ARA, Voets IK. Sticky Supramolecular Grafts Stretch Single Polymer Chains. Macromolecules 2013. [DOI: 10.1021/ma4006846] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Martijn A. J. Gillissen
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate
School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - E. W. Meijer
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Theodorakis PE, Fytas NG. A study for the static properties of symmetric linear multiblock copolymers under poor solvent conditions. J Chem Phys 2012; 136:094902. [DOI: 10.1063/1.3689303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Sing CE, Alexander-Katz A. Equilibrium Structure and Dynamics of Self-Associating Single Polymers. Macromolecules 2011. [DOI: 10.1021/ma200830t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles E. Sing
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Guo J, Liang H, Wang ZG. Coil-to-globule transition by dissipative particle dynamics simulation. J Chem Phys 2011; 134:244904. [DOI: 10.1063/1.3604812] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Fytas NG, Theodorakis PE. Analysis of the static properties of cluster formations in symmetric linear multiblock copolymers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:235106. [PMID: 21613714 DOI: 10.1088/0953-8984/23/23/235106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We use molecular dynamics simulations to study the static properties of a single linear multiblock copolymer chain under poor solvent conditions varying the block length N, the number of blocks n, and the solvent quality by variation of the temperature T. We study the most symmetrical case, where the number of blocks of monomers of type A, n(A), equals that of monomers B, n(B) (n(A) = n(B) = n/2), the length of all blocks is the same irrespective of their type, and the potential parameters are also chosen symmetrically, as for a standard Lennard-Jones fluid. Under poor solvent conditions the chains collapse and blocks with monomers of the same type form clusters, which are phase separated from the clusters with monomers of the other type. We study the dependence of the size of the clusters formed on n, N and T. Furthermore, we discuss our results with respect to recent simulation data on the phase behaviour of such macromolecules, providing a complete picture for the cluster formations in single multiblock copolymer chains under poor solvent conditions.
Collapse
Affiliation(s)
- N G Fytas
- Department of Materials Science, University of Patras, 26504 Patras, Greece.
| | | |
Collapse
|