1
|
Morozov IA. Atomic force microscopy nanoindentation kinetics and subsurface visualization of soft inhomogeneous polymer. Microsc Res Tech 2021; 84:1959-1966. [PMID: 33713508 DOI: 10.1002/jemt.23751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 11/11/2022]
Abstract
Modern techniques of nanoindentation by atomic force microscopy (AFM) produce maps of topography and physical-mechanical properties of the material. Analysis of the interaction rate of the AFM tip with the soft surface reveals the surface and subsurface structure and expands standard analysis of the material behavior. Phase-separated polymer (polyurethane, elastic modulus-6 MPa) is studied. Reversible inelastic changes of the surface at different stages of indentation were established in dependence on peculiarities of velocity and position of the AFM-tip in the material: uniform soft nanofilm covering the outer surface gradually passes into fibrillar heterogeneous structure of the polymer. The point of stable mechanical contact is defined, and the elastic moduli of soft and hard blocks of the polymer are estimated using certain intervals of the indentation. The presented methods of surface analysis are useful in the study of a wide class of soft heterogeneous materials.
Collapse
Affiliation(s)
- Ilya A Morozov
- Institute of Continuous Media Mechanics UB RAS, Perm, Russia
| |
Collapse
|
2
|
Lenjani SV, Zerson M, Wang Q, Sommer M, Magerle R. Liquid-Crystalline Order and Film Thickness Determine the Semicrystalline Morphology in Diketopyrrolopyrrole-Based Copolymers. ACS Macro Lett 2019; 8:1611-1616. [PMID: 35619397 DOI: 10.1021/acsmacrolett.9b00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lyotropic liquid crystalline (LC) phases offer a means of controlling molecular order and orientation in thin films of conjugated polymers. Surface energy, surface-induced ordering, and film thickness are additional factors determining the molecular order in thin films. Through solvent vapor annealing and in situ atomic force microscopy in the swollen state, we show that in ultrathin films of a poly(dithiazolyldiketopyrrolopyrrole-tetrafluorobenzene) (PTzDPPTzF4) alternating copolymer stacks of monomolecular-thick layers with a 2.1 nm step height form, which resemble a lyotropic smectic LC phase. Within the smectic layers, the polymer backbones are aligned parallel to the film plane, with edge-on oriented diketopyrrolopyrrole (DPP) cores. Thicker films resemble a semicrystalline morphology with lamellae consisting of blocks. Such lamellae are typical for polymers crystallizing via Strobl's block-forming model. Our findings indicate that molecular order, molecular orientation, and the morphology of PTzDPPTzF4 copolymer films are tunable by LC order and by varying the film thickness according to the desired application of the particular organic electronic devices.
Collapse
Affiliation(s)
- Shayan Vazirieh Lenjani
- Chemische Physik, Institut für Physik, Technische Universität Chemnitz, Reichenhainerstr. 70, 09126 Chemnitz, Germany
| | - Mario Zerson
- Chemische Physik, Institut für Physik, Technische Universität Chemnitz, Reichenhainerstr. 70, 09126 Chemnitz, Germany
| | - Qian Wang
- Polymerchemie, Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Michael Sommer
- Polymerchemie, Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Robert Magerle
- Chemische Physik, Institut für Physik, Technische Universität Chemnitz, Reichenhainerstr. 70, 09126 Chemnitz, Germany
| |
Collapse
|
3
|
Dehnert M, Magerle R. 3D depth profiling of the interaction between an AFM tip and fluid polymer solutions. NANOSCALE 2018. [PMID: 29532845 DOI: 10.1039/c8nr00299a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the atomic force microscopy (AFM) investigation of soft polymers and liquids, the tip-sample interaction is dominated by long-range van der Waals forces, capillary forces and adhesion. Furthermore, the tip can indent several tens of nanometres into the surface, and it can pull off a polymer filament from the surface. Therefore, measuring the unperturbed shape of a polymeric fluid can be challenging. Here, we study the tip-sample interaction with polystyrene droplets swollen in chloroform vapour, where we can utilize the solvent vapour concentration to adjust the specimen's mechanical properties from a stiff solid to a fluid film. With the same AFM tip, we use two different AFM force spectroscopy methods to measure three-dimensional (3D) depth profiles of the tip-sample interaction: force-distance (FD) curves and amplitude-phase-distance (APD) curves. The 3D depth profiles reconstructed from FD and APD measurements provide detailed insight into the tip-sample interaction mechanism for a fluid polymer solution. The fluid's intrinsic relaxation time, which we measure with an AFM-based step-strain experiment, is essential for understanding the tip-sample interaction mechanism. Furthermore, measuring 3D depth profiles and using APD data to reconstruct the unperturbed surface comprise a versatile methodology for obtaining accurate dimensional measurements of fluid and gel-like objects on the nanometre scale.
Collapse
Affiliation(s)
- Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| | - Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| |
Collapse
|
4
|
Wang D, Russell TP. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01459] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Uhlig MR, Magerle R. Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils. NANOSCALE 2017; 9:1244-1256. [PMID: 28054696 DOI: 10.1039/c6nr07697a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanical properties of collagen fibrils depend on the amount and the distribution of water molecules within the fibrils. Here, we use atomic force microscopy (AFM) to study the effect of hydration on the viscoelastic properties of reconstituted type I collagen fibrils in air with controlled relative humidity. With the same AFM tip, we investigate the same area of a collagen fibril with two different force spectroscopy methods: force-distance (FD) and amplitude-phase-distance (APD) measurements. This allows us to separate the contributions of the fibril's viscoelastic response and the capillary force to the tip-sample interaction. A water bridge forms between the tip apex and the surface, causing an attractive capillary force, which is the main contribution to the energy dissipated from the tip to the specimen in dynamic AFM. The force hysteresis in the FD measurements and the tip indentation of only 2 nm in the APD measurements show that the hydrated collagen fibril is a viscoelastic solid. The mechanical properties of the gap regions and the overlap regions in the fibril's D-band pattern differ only in the top 2 nm but not in the fibril's bulk. We attribute this to the reduced number of intermolecular crosslinks in the reconstituted collagen fibril. The presented methodology allows the mechanical surface properties of hydrated collagenous tissues and biomaterials to be studied with unprecedented detail on the nanometer scale.
Collapse
Affiliation(s)
- Manuel R Uhlig
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| | - Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| |
Collapse
|
6
|
Dehnert M, Spitzner EC, Beckert F, Friedrich C, Magerle R. Subsurface Imaging of Functionalized and Polymer-Grafted Graphene Oxide. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Martin Dehnert
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Eike-Christian Spitzner
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Fabian Beckert
- Freiburger
Materialforschungszentrum, Albert-Ludwigs-Universität, D-79098 Freiburg, Germany
| | - Christian Friedrich
- Freiburger
Materialforschungszentrum, Albert-Ludwigs-Universität, D-79098 Freiburg, Germany
| | - Robert Magerle
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|
7
|
Zerson M, Neumann M, Steyrleuthner R, Neher D, Magerle R. Surface Structure of Semicrystalline Naphthalene Diimide–Bithiophene Copolymer Films Studied with Atomic Force Microscopy. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mario Zerson
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, Chemnitz, Germany
| | - Martin Neumann
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, Chemnitz, Germany
| | - Robert Steyrleuthner
- Institute
of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Dieter Neher
- Institute
of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Robert Magerle
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, Chemnitz, Germany
| |
Collapse
|
8
|
Alekseev A, Efimov A, Loos J, Matsko N, Syurik J. Three-dimensional imaging of polymer materials by Scanning Probe Tomography. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Payam AF, Ramos JR, Garcia R. Molecular and nanoscale compositional contrast of soft matter in liquid: interplay between elastic and dissipative interactions. ACS NANO 2012; 6:4663-70. [PMID: 22578176 DOI: 10.1021/nn2048558] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate that the phase contrast observed with an amplitude modulation atomic force microscope depends on two factors, the generation of higher harmonics components and the energy dissipated on the sample surface. Those factors are ultimately related to the chemical composition and structure of the surface. Our findings are general, but they specifically describe the results obtained while imaging soft materials in liquid. Molecular resolution experiments performed on a protein membrane surface in liquid confirm the theory.
Collapse
Affiliation(s)
- Amir F Payam
- IMM-Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain
| | | | | |
Collapse
|