1
|
Darban MA, Lock SSM, Ilyas SU, Kang DY, Othman MHD, Yiin CL, Waqas S, Bashir Z. Molecular simulation of [P8883][Tf 2N] ionic liquid decorated silica in 6FDA-ODA based mixed matrix membrane for enhanced CO 2/CH 4 separation. RSC Adv 2024; 14:22894-22915. [PMID: 39040689 PMCID: PMC11261340 DOI: 10.1039/d4ra02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024] Open
Abstract
Mixed-matrix membranes (MMMs) have been reported to have considerable scope in gas separation applications because of their merged inherent strength of a durable polymer matrix and the exceptional performance capabilities of inorganic fillers. The selection of comparatively suitable polymers with fillers that can match each other and boost interfacial compatibility while ensuring uniform dispersion of filler within the polymer is still intensively demanding and is challenging at the experimental scale. Ionic liquids (ILs) are effective in promoting better dispersion and compatibility, leading to improved separation performance. A computational molecular simulation approach is employed in current work to design a hybrid membrane having Trioctapropyl phosphonium bis(trifluoromethylsulfonyl)imide [P8883][Tf2N] IL decorated silica as a filler and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-4,4'-oxydianiline (6FDA-ODA) polymer for carbon dioxide (CO2) separation from methane (CH4). Thermophysical and gas transport properties under pure and mixed gas condition (30, 50, and 70% CO2/CH4) within the MMMs with varying filler loadings (5, 10, and 15 wt% IL-silica) are examined via Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) simulations. Membrane characteristics like glass transition temperature (T g), Fractional Free Volume (v f), X-Ray Diffraction (XRD), solubility, diffusivity, permeability, and selectivity for neat and IL-silica filled 6FDA-ODA are computed. The results show that the T g of the composite membrane with 5 wt% IL-silica is found to be considerably higher (with 305 °C) than that of the pure 6FDA-ODA polymer having 298 °C. A higher T g value highlights the effective dispersion and higher adhesion between the filler and polymer membrane. Additionally, CO2 permeability for 5 wt% IL-silica/6FDA-ODA MMM is significantly improved, measuring 319.0 barrer while maintaining a CO2/CH4 selectivity of 16.2. These values are 89% and 56% respectively, greater than the corresponding values of neat 6FDA-ODA membrane. Published data from the literature review is used to validate the findings and guarantee their reliability. The obtained results exhibited an error in the range of 0.7-9%. Hence, it is concluded from the study that molecular simulation can be used to design IL decorated silica incorporated within 6FDA-ODA matrix, which is able to boost the interfacial compatibility, with elevated CO2/CH4 selectivity and CO2 permeability.
Collapse
Affiliation(s)
- Mehtab Ali Darban
- Centre of Carbon Capture, Utilisation and Storage (CCCUS), Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| | - Serene Sow Mun Lock
- Centre of Carbon Capture, Utilisation and Storage (CCCUS), Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| | - Suhaib Umer Ilyas
- Chemical Engineering Department, University of Jeddah Jeddah 23890 Kingdom of Saudi Arabia
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM) 81310, Skudai Johor Bahru Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
- Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
| | - Sharjeel Waqas
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| | - Zunara Bashir
- Centre of Carbon Capture, Utilisation and Storage (CCCUS), Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Malaysia
| |
Collapse
|
2
|
Janewithayapun R, Hedenqvist MS, Cousin F, Idström A, Evenäs L, Lopez-Sanchez P, Westman G, Larsson A, Ström A. Nanostructures of etherified arabinoxylans and the effect of arabinose content on material properties. Carbohydr Polym 2024; 331:121846. [PMID: 38388051 DOI: 10.1016/j.carbpol.2024.121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
To further our understanding of a thermoplastic arabinoxylan (AX) material obtained through an oxidation-reduction-etherification pathway, the role of the initial arabinose:xylose ratio on the material properties was investigated. Compression molded films with one molar substitution of butyl glycidyl ether (BGE) showed markedly different tensile behaviors. Films made from low arabinose AX were less ductile, while those made from high arabinose AX exhibited elastomer-like behaviors. X-ray scattering confirmed the presence of nanostructure formation resulting in nano-domains rich in either AX or BGE, from side chain grafting. The scattering data showed variations in the presence of ordered structures, nano-domain sizes and their temperature response between AX with different arabinose contents. In dynamic mechanical testing, three transitions were observed at approximately -90 °C, -50 °C and 80 °C, with a correlation between samples with more structured nano-domains and those with higher onset transition temperatures and lower storage modulus decrease. The mechanical properties of the final thermoplastic AX material can therefore be tuned by controlling the composition of the starting material.
Collapse
Affiliation(s)
- Ratchawit Janewithayapun
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mikael S Hedenqvist
- FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR 12, CEA-CNRS, 91191 Gif Sur Yvette, France
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Patricia Lopez-Sanchez
- Department of Analytical Chemistry, Nutrition, and Food Science. Facultad de Ciencias, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
3
|
Amorphous characterization of pharmaceutical drug substances enabled by the elastic modulus mapping of atomic force microscope. Int J Pharm 2022; 621:121784. [DOI: 10.1016/j.ijpharm.2022.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
4
|
Wolf CM, Guio L, Scheiwiller S, Pakhnyuk V, Luscombe C, Pozzo LD. Strategies for the Development of Conjugated Polymer Molecular Dynamics Force Fields Validated with Neutron and X-ray Scattering. ACS POLYMERS AU 2021; 1:134-152. [PMID: 36855657 PMCID: PMC9954299 DOI: 10.1021/acspolymersau.1c00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated polymers (CPs) enable a wide range of lightweight, lower cost, and flexible organic electronic devices, but a thorough understanding of relationships between molecular structure and dynamics and electronic performance is critical for improved device efficiencies and for new technologies. Molecular dynamics (MD) simulations offer in silico insight into this relationship, but their accuracy relies on the approach used to develop the model's parameters or force field (FF). In this Perspective, we first review current FFs for CPs and find that most of the models implement an arduous reparameterization of inter-ring torsion potentials and partial charges of classical FFs. However, there are few FFs outside of simple CP molecules, e.g., polythiophenes, that have been developed over the last two decades. There is also limited reparameterization of other parameters, such as nonbonded Lennard-Jones interactions, which we find to be directly influenced by conjugation in these materials. We further provide a discussion on experimental validation of MD FFs, with emphasis on neutron and X-ray scattering. We define multiple ways in which various scattering methods can be directly compared to results of MD simulations, providing a powerful experimental validation metric of local structure and dynamics at relevant length and time scales to charge transport mechanisms in CPs. Finally, we offer a perspective on the use of neutron scattering with machine learning to enable high-throughput parametrization of accurate and experimentally validated CP FFs enabled not only by the ongoing advancements in computational chemistry, data science, and high-performance computing but also using oligomers as proxies for longer polymer chains during FF development.
Collapse
Affiliation(s)
- Caitlyn M. Wolf
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States,Center
for Neutron Research, Stop 6102, National
Institute of Standards and Technology, Gaithersburg, Maryland 20889-6102, United States,
| | - Lorenzo Guio
- Department
of Material Science and Engineering, University
of Washington, Box 352120, Seattle, Washington 98195-2120, United States
| | - Sage Scheiwiller
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States
| | - Viktoria Pakhnyuk
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Christine Luscombe
- Department
of Material Science and Engineering, University
of Washington, Box 352120, Seattle, Washington 98195-2120, United States,Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Lilo D. Pozzo
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195-1750, United States,
| |
Collapse
|
5
|
The dielectric response of phenothiazine-based glass-formers with different molecular complexity. Sci Rep 2021; 11:15816. [PMID: 34349137 PMCID: PMC8338989 DOI: 10.1038/s41598-021-95127-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
We examined a series of structurally related glass-forming liquids in which a phenothiazine-based tricyclic core (PTZ) was modified by attaching n-alkyl chains of different lengths (n = 4, 8, 10). We systematically disentangled the impact of chemical structure modification on the intermolecular organization and molecular dynamics probed by broadband dielectric spectroscopy (BDS). X-ray diffraction (XRD) patterns evidenced that all PTZ-derivatives are not 'ordinary' liquids and form nanoscale clusters. The chain length has a decisive impact on properties, exerting a plasticizing effect on the dynamics. Its elongation decreases glass transition temperature with slight impact on fragility. The increase in the medium-range order was manifested as a broadening of the dielectric loss peak reflected in the lower value of stretching parameter βKWW. A disagreement with the behavior observed for non-associating liquids was found as a deviation from the anti-correlation between the value of βKWW and the relaxation strength of the α-process. Besides, to explain the broadening of loss peak in PTZ with the longest (decyl) chain a slow Debye process was postulated. In contrast, the sample with the shortest alkyl chain and a less complex structure with predominant supramolecular assembly through π-π stacking exhibits no clear Debye-mode fingerprints. The possible reasons are also discussed.
Collapse
|
6
|
Perera RM, Gupta S, Li T, Bleuel M, Hong K, Schneider GJ. Influence of NaCl on shape deformation of polymersomes. SOFT MATTER 2021; 17:4452-4463. [PMID: 33908443 DOI: 10.1039/d0sm02271c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymersomes frequently appear in the literature as promising candidates for a wide range of applications from targeted drug delivery to nanoreactors. From a cell mimetic point of view, it is important to understand the size and shape changes of the vesicles in the physiological environment since that can influence the drug delivery mechanism. In this work we studied the structural features of polymersomes consisting of poly(ethylene glycol)-poly(dimethylsiloxane)-poly(ethylene glycol) at the nanoscopic length scale in the presence of NaCl, which is a very common molecule in the biotic aqueous environment. We used dynamic light scattering (DLS), cryo-TEM, small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS). We observed transformation of polymersomes from spherical to elongated vesicles at low salt concentration and into multivesicular structures at high salt concentration. Model fitting analysis of SANS data indicated a reduction of vesicle radius up to 47% and from the SAXS data we observed an increase in membrane thickness up to 8% and an increase of the PDMS hydrophobic segment up to 11% indicating stretching of the membrane due to osmotic imbalance. Also, from the increase in the interlamellar repeat distance up to 98% under high salt concentrations, we concluded that the shape and structural changes observed in the polymersomes are a combined result of osmotic pressure change and ion-membrane interactions.
Collapse
Affiliation(s)
- Rasangi M Perera
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Sudipta Gupta
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-8562, USA and Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, USA
| | - Kunlun Hong
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA. and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
7
|
Arbe A, Alvarez F, Colmenero J. Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations. Polymers (Basel) 2020; 12:E3067. [PMID: 33371357 PMCID: PMC7767341 DOI: 10.3390/polym12123067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Combining neutron scattering and fully atomistic molecular dynamics simulations allows unraveling structural and dynamical features of polymer melts at different length scales, mainly in the intermolecular and monomeric range. Here we present the methodology developed by us and the results of its application during the last years in a variety of polymers. This methodology is based on two pillars: (i) both techniques cover approximately the same length and time scales and (ii) the classical van Hove formalism allows easily calculating the magnitudes measured by neutron scattering from the simulated atomic trajectories. By direct comparison with experimental results, the simulated cell is validated. Thereafter, the information of the simulations can be exploited, calculating magnitudes that are experimentally inaccessible or extending the parameters range beyond the experimental capabilities. We show how detailed microscopic insight on structural features and dynamical processes of various kinds has been gained in polymeric systems with different degrees of complexity, and how intriguing questions as the collective behavior at intermediate length scales have been faced.
Collapse
Affiliation(s)
- Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
| | - Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
8
|
Gkourmpis T, Mitchell GR. The Use of Scattering Data in the Study of the Molecular Organisation of Polymers in the Non-Crystalline State. Polymers (Basel) 2020; 12:polym12122917. [PMID: 33291414 PMCID: PMC7762082 DOI: 10.3390/polym12122917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Scattering data for polymers in the non-crystalline state, i.e., the glassy state or the molten state, may appear to contain little information. In this work, we review recent developments in the use of scattering data to evaluate in a quantitative manner the molecular organization of such polymer systems. The focus is on the local structure of chain segments, on the details of the chain conformation and on the imprint the inherent chemical connectivity has on this structure. We show the value of tightly coupling the scattering data to atomistic-level computer models. We show how quantitative information about the details of the chain conformation can be obtained directly using a model built from definitions of relatively few parameters. We show how scattering data may be supplemented with data from specific deuteration sites and used to obtain information hidden in the data. Finally, we show how we can exploit the reverse Monte Carlo approach to use the data to drive the convergence of the scattering calculated from a 3d atomistic-level model with the experimental data. We highlight the importance of the quality of the scattering data and the value in using broad Q scattering data obtained using neutrons. We illustrate these various methods with results drawn from a diverse range of polymers.
Collapse
Affiliation(s)
- Thomas Gkourmpis
- Innovation & Technology, Borealis AB, SE-444 86 Stenungsund, Sweden
- Correspondence: ; Tel.: +46-303-205-576
| | - Geoffrey R. Mitchell
- Centre of Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| |
Collapse
|
9
|
Hatami A, Salahshoori I, Rashidi N, Nasirian D. The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Wu Q, Lv C, Zhang Z, Li Y, Nie J, Xu J, Du B. Poly( N-isopropylacrylamide- co-1-vinyl-3-alkylimidazolium bromide) Microgels with Internal Nanophase-Separated Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9203-9214. [PMID: 29999323 DOI: 10.1021/acs.langmuir.8b01575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microgels with internal nanophase-separated structures were fabricated by surfactant-free emulsion copolymerization of N-isopropylacrylamide (NIPAm) and ionic liquid comonomers, namely, 1-vinyl-3-alkylimidazolium bromide (VIM nBr) with various lengths n of long alkyl side chain, in an aqueous solution at 70 °C using N, N'-methylenebisacrylamide as the cross-linker. Combined techniques of transmission electron microscopy, dynamic and static light-scattering, differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and polarized optical microscopy were employed to systematically investigate the sizes, morphologies, and properties of the obtained microgels as well as the microstructures and phase transition of nanophases inside the microgels. The obtained P(NIPAm/VIM nBr) microgels are spherical with narrow size distributions, and the nanophases have a radius of about 8-12 nm and are randomly distributed inside the microgels. The cooperative competition of the hydrophilic quaternary vinylimidazole moieties and hydrophobic long alkyl side chains determines the thermal sensitive behavior of the P(NIPAm/VIM nBr) microgels. DSC and WAXD results reveal that the nanophases consist of the ordered alkyl side chains with a layered crystalline structure at low temperature, which exhibit a low melting temperature and a broad melting transition. SAXS results further show that the nanophases form a layered liquid crystalline structure at high temperature for the microgel suspensions and freeze-dried microgels.
Collapse
|
11
|
|
12
|
Schneider F, Balaceanu A, Di Z, Melnichenko YB, Allgaier J, Pich A, Schneider GJ, Richter D. Internal structure and phase transition behavior of stimuli-responsive microgels in PEG melts. SOFT MATTER 2017; 13:2738-2748. [PMID: 28217774 DOI: 10.1039/c6sm02501c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work we investigated the behaviour of stimuli-responsive poly(N-vinylcaprolactam) (PVCL) microgels in poly(ethylene glycol) (PEGs) with a linear architecture. We performed small-angle neutron scattering (SANS) experiments at two different microgel concentrations and various temperatures. The results were compared with those on PVCL microgels in water. PVCL in PEG (molecular weight MW = 2 kg mol-1) exhibits a volume phase transition temperature (VPTT) at a temperature between 160 and 180 °C. The diameter of the swollen microgel is only slightly smaller than in water. Furthermore, with increasing molecular weight of the surrounding polymer matrices fewer chains penetrate the microgel particles. In agreement with that, we identify a decreasing diameter with increasing molecular weight. In the short chain polymers up to MW = 3 kg mol-1, PVCL is well dispersed in the matrices with only minor signatures of agglomeration. For the well dispersed systems, we find unperturbed chain conformation of the PEG. Our results clearly show that the miscibility of PVCL and PEG disappears in a molecular weight range of 3 to 10 kg mol-1.
Collapse
Affiliation(s)
- Florian Schneider
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Arbe A, Moreno AJ, Allgaier J, Ivanova O, Fouquet P, Colmenero J, Richter D. Role of Dynamic Asymmetry on the Collective Dynamics of Comblike Polymers: Insights from Neutron Spin-Echo Experiments and Coarse-Grained Molecular Dynamics Simulations. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arantxa Arbe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - Angel J. Moreno
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - Jürgen Allgaier
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - Oxana Ivanova
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - Peter Fouquet
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - Juan Colmenero
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| | - Dieter Richter
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM), CSIC−UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Jülich Centre for Neutron Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz
Maier-Leibnitz Zentrum, Lichtenbergstr.1, 85747 Garching, Germany
- Institut Laue−Langevin, CS 20156, 38042 Grenoble, Cedex 9, France
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| |
Collapse
|
14
|
Goracci G, Arbe A, Alegría A, Su Y, Gasser U, Colmenero J. Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study. J Chem Phys 2016; 144:154903. [DOI: 10.1063/1.4946004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G. Goracci
- Centro de Física de Materiales (CFM) (CSIC–UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - A. Arbe
- Centro de Física de Materiales (CFM) (CSIC–UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - A. Alegría
- Centro de Física de Materiales (CFM) (CSIC–UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
| | - Y. Su
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| | - U. Gasser
- Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - J. Colmenero
- Centro de Física de Materiales (CFM) (CSIC–UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| |
Collapse
|
15
|
Cui J, Martínez-Tong DE, Sanz A, Ezquerra TA, Rebollar E, Nogales A. Relaxation and Conductivity in P3HT/PC71BM Blends As Revealed by Dielectric Spectroscopy. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jing Cui
- Instituto de Estructura
de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | | | - Alejandro Sanz
- Instituto de Estructura
de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Tiberio A. Ezquerra
- Instituto de Estructura
de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| | - Esther Rebollar
- Instituto de Química
Física Rocasolano, IQFR-CSIC, Serrano 119, Madrid 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura
de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
| |
Collapse
|
16
|
Tejero R, Arbe A, Fernández-García M, López D. Nanostructuration by Self-Assembly in N-Alkyl Thiazolium and Triazolium Side-Chain Polymethacrylates. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rubén Tejero
- Instituto de Ciencia y Tecnología de Polímeros
(ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Arantxa Arbe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo de Manuel Lardizábal,
5, E-20018 San Sebastián, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros
(ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros
(ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
17
|
Goracci G, Arbe A, Alegría A, Lohstroh W, Su Y, Colmenero J. Dynamics of tetrahydrofuran as minority component in a mixture with poly(2-(dimethylamino)ethyl methacrylate): A neutron scattering and dielectric spectroscopy investigation. J Chem Phys 2015; 143:094505. [PMID: 26342375 DOI: 10.1063/1.4929906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated a mixture of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and tetrahydrofuran (THF) (70 wt. % PDMAEMA/30 wt. % THF) by combining dielectric spectroscopy and quasielastic neutron scattering (QENS) on a labelled sample, focusing on the dynamics of the THF molecules. Two independent processes have been identified. The "fast" one has been qualified as due to an internal motion of the THF ring leading to hydrogen displacements of about 3 Å with rather broadly distributed activation energies. The "slow" process is characterized by an Arrhenius-like temperature dependence of the characteristic time which persists over more than 9 orders of magnitude in time. The QENS results evidence the confined nature of this process, determining a size of about 8 Å for the volume within which THF hydrogens' motions are restricted. In a complementary way, we have also investigated the structural features of the sample. This study suggests that THF molecules are well dispersed among side-groups nano-domains in the polymer matrix, ruling out a significant presence of clusters of solvent. Such a good dispersion, together with a rich mobility of the local environment, would prevent cooperativity effects to develop for the structural relaxation of solvent molecules, frustrating thereby the emergence of Vogel-Fulcher-like behavior, at least in the whole temperature interval investigated.
Collapse
Affiliation(s)
- G Goracci
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - A Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - A Alegría
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - W Lohstroh
- Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstraße 1, D-85748 Garching, Germany
| | - Y Su
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| | - J Colmenero
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
18
|
Liang S, O’Reilly MV, Choi UH, Shiau HS, Bartels J, Chen Q, Runt J, Winey KI, Colby RH. High Ion Content Siloxane Phosphonium Ionomers with Very Low Tg. Macromolecules 2014. [DOI: 10.1021/ma5001546] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siwei Liang
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael V. O’Reilly
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - U Hyeok Choi
- Functional Composites
Department, Korea Institute of Materials
Science, Changwon, 642-831, Korea
| | - Huai-Suen Shiau
- Department
of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua Bartels
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Quan Chen
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James Runt
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Ralph H. Colby
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 2014; 20:2119. [DOI: 10.1007/s00894-014-2119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
|
20
|
Golzar K, Amjad-Iranagh S, Amani M, Modarress H. Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.09.056] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Khairy Y, Alvarez F, Arbe A, Colmenero J. Collective Features in Polyisobutylene. A Study of the Static and Dynamic Structure Factor by Molecular Dynamics Simulations. Macromolecules 2013. [DOI: 10.1021/ma401669y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Khairy
- Centro
de Física de Materiales (CSIC−UPV/EHU), Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - F. Alvarez
- Centro
de Física de Materiales (CSIC−UPV/EHU), Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
| | - A. Arbe
- Centro
de Física de Materiales (CSIC−UPV/EHU), Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - J. Colmenero
- Centro
de Física de Materiales (CSIC−UPV/EHU), Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| |
Collapse
|
22
|
Colmenero J, Brodeck M, Arbe A, Richter D. Dynamics of Poly(butylene oxide) Well above the Glass Transition. A Fully Atomistic Molecular Dynamics Simulation Study. Macromolecules 2013. [DOI: 10.1021/ma302452t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Colmenero
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018
San Sebastián, Spain
| | - M. Brodeck
- Jülich Center for Neutron
Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - A. Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - D. Richter
- Jülich Center for Neutron
Science and Institut for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Jülich Center for Neutron Science, Outstation at FRM II, 85747 Garching,
Germany
| |
Collapse
|
23
|
Colmenero J, Arbe A. Recent progress on polymer dynamics by neutron scattering: From simple polymers to complex materials. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/polb.23178] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|