1
|
Bertoni S, Albertini B, Passerini N. Investigating the physicochemical properties of solid dispersions based on semicrystalline carriers: A case study with ketoprofen. Int J Pharm 2023; 632:122576. [PMID: 36596317 DOI: 10.1016/j.ijpharm.2022.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Hydrophilic semicrystalline carriers represent an alternative to amorphous polymers due to their low melting temperature, useful for the production of solid dispersions (SDs) by melting-based technologies. This research aims to compare SDs of ketoprofen (KET) and three different semicrystalline carriers (PEG, Poloxamer and Gelucire) regarding miscibility, phase behavior, molecular interactions and stability. KET was chosen owing to its low solubility and high glass forming ability. Estimation of drug-excipient miscibility was performed by Flory-Huggins theory. Negative Gibbs free energy indicated a spontaneous mixing of KET with the three carriers and miscibility in the order PEG > Poloxamer > Gelucire. SDs up to 40 % w/w of drug were produced by melting process at a temperature below KET melting point. Characterization of SDs was performed by differential scanning calorimetry, polarized light microscopy and powder X-ray diffraction. In case of PEG and Poloxamer, the drug incorporation did not affect carrier crystallinity, while KET was in the amorphous state. Differently, KET retarded the crystallization of Gelucire and at high drug loadings the SDs were amorphous and semisolid. FT-IR analysis revealed a strong interaction between KET and the three carriers. Finally, PEG-based SDs above 20 % KET loading displayed drug crystallization after 6 months of storage; while Poloxamer and Gelucire-based SDs showed KET crystallization only at 40 % KET. Due to its less hydrophilic character and limited water uptake, Gelucire showed the best stability among the three excipients.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and BioTechnology, PharmTech Lab, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, PharmTech Lab, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, PharmTech Lab, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
2
|
Murali A, Ganesan M, Satapathy DK, Kumar PBS. Penetrant-Induced Glass-like Transition in Thin Chitosan Films. J Phys Chem B 2021; 125:12617-12626. [PMID: 34730977 DOI: 10.1021/acs.jpcb.1c07903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the water vapor-induced swelling and the emergence of a penetrant-induced glass-like transition in the substrate-supported glassy chitosan thin films. The time evolution of the film thickness under different levels of relative humidity conditions is measured in real-time using a spectroscopic ellipsometer equipped with a humidity cell. In a dry film, the network of chitosan chains is in a glassy state, and upon exposure to water vapor, initially, the film swells by Fickian diffusion of water molecules, which triggers the structural relaxations of the chains. Under higher humidity conditions, a relatively slower evolution of thickness succeeds the initial rapid swelling due to the non-Fickian sorption of water molecules. The swelling characteristics of the polymer films are accounted for by considering the diffusion-relaxation mechanism of chains in the presence of smaller penetrant molecules. The penetrant-induced glass-like transition (Pg), where the polymer film isothermally transits from a glassy to a rubbery state, is determined for pristine and cross-linked chitosan films. Pg is determined from the abrupt change in the rate of swelling observed upon increasing the relative humidity. Chemical crosslinking has an evident influence on the penetrant-induced glass-like transition of the chitosan films. Pg was found to rise sharply for stiffer films with higher cross-linking density.
Collapse
Affiliation(s)
- Aathira Murali
- Department of Physics, Indian Institute of Technology Palakkad, Kanjikode, Kerala 678623, India
| | - Manikandan Ganesan
- Soft Materials Laboratory, Department of Physics and Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Kanjikode, Kerala 678623, India
| |
Collapse
|
3
|
Ogieglo W, Song K, Chen C, Lei Q, Han Y, Pinnau I. Nano-Confinement Effects on Structural Development and Organic Solvent-Induced Swelling of Ultrathin Carbon Molecular Sieve Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21765-21774. [PMID: 33908240 PMCID: PMC8289180 DOI: 10.1021/acsami.1c03392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Successful implementation of carbon molecular sieve (CMS) membranes in large scale chemical processes inevitably relies on fabrication of high performance integrally skinned asymmetric or thin-film composite membranes. In principle, to maximize separation efficiency the selective CMS layer should be as thin as possible which requires its lateral confinement to a supporting structure. In this work, we studied pyrolysis-induced structural development as well as ethanol vapor-induced swelling of ultrathin CMS films made from a highly aromatic polyimide of an intrinsic microporosity (PIM-PI) precursor. Utilization of a light polarization-sensitive technique, spectroscopic ellipsometry, allowed for the identification of an internal orientation within the turbostratic amorphous CMS structure driven by the laterally constraining support. Our results indicated a significant thickness dependence both in the extent of pyrolytic collapse and response to organic vapor penetrant. Thinner, substrate-confined films (∼30 nm) collapsed more extensively leading to a reduction of microporosity in comparison to their thicker (∼300 nm) as well as self-supported (∼70 μm) counterparts. The reduced microporosity in the thinner films induced changes in the balance between penetrant-induced dilation (swelling) and filling of micropores. In comparison to thicker films, the initial lower microporosity of the thinner films was accompanied by slightly enhanced organic vapor-induced swelling. The presented results are anticipated to generate the fundamental knowledge necessary to design optimized ultrathin CMS membranes. In particular, our results reinforce previous findings that excessive reduction of the selective layer thickness in amorphous microporous materials (such as PIMs or CMS) beyond several hundred nanometers may not be optimal for maximizing their fluid transport performance.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- Functional
Polymer Membranes Group, Advanced Membranes and Porous Materials Center,
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Kepeng Song
- Nanostructured
Functional Materials, Advanced Membranes and Porous Materials Center,
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Cailing Chen
- Nanostructured
Functional Materials, Advanced Membranes and Porous Materials Center,
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Qiong Lei
- Nanostructured
Functional Materials, Advanced Membranes and Porous Materials Center,
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Yu Han
- Nanostructured
Functional Materials, Advanced Membranes and Porous Materials Center,
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Ingo Pinnau
- Functional
Polymer Membranes Group, Advanced Membranes and Porous Materials Center,
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| |
Collapse
|
4
|
6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO 2/CH 4 Separation. NANOMATERIALS 2021; 11:nano11030668. [PMID: 33800502 PMCID: PMC7999237 DOI: 10.3390/nano11030668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of <40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1–4 wt.% GO and 5–15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO2:CH4 binary mixture at 2 bar feed pressure and 25 °C. The pristine 6FDA-copolyimide showed CO2 permeability (PCO2) of 147 Barrer and CO2/CH4 selectivity (αCO2/CH4) of 47.5. At the optimum GO loading (1 wt.%), the PCO2 and αCO2/CH4 were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its PCO2; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16–55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.
Collapse
|
5
|
DeFelice J, Lipson JEG. The influence of additives on polymer matrix mobility and the glass transition. SOFT MATTER 2021; 17:376-387. [PMID: 33169780 DOI: 10.1039/d0sm01634a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the region near an interface, the microscopic properties of a glass forming liquid may be perturbed from their equilibrium bulk values. In this work, we probe how the interfacial effects of additive particles dispersed in a matrix can influence the local mobility of the material and its glass transition temperature, Tg. Experimental measurements and simulation results indicate that additives, such as nanoparticles, gas molecules, and oligomers, can shift the mobility and Tg of a surrounding polymer matrix (even for relatively small concentrations of additive; e.g., 5-10% by volume) relative to the pure bulk matrix, thus leading to Tg enhancement or suppression. Additives thus provide a potential route for modifying the properties of a polymer material without significantly changing its chemical composition. Here we apply the Limited Mobility (LM) model to simulate a matrix containing additive species. We show that both additive concentration, as well as the strength of its very local influence on the surrounding matrix material, will determine whether the Tg of the system is raised or lowered, relative to the pure matrix. We demonstrate that incorporation of additives into the simple LM simulation method, which has successfully described the behavior of bulk and thin film glassy solids, leads to direct connections with available experimental and simulation results for a broad range of polymer/additive systems.
Collapse
Affiliation(s)
- Jeffrey DeFelice
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
6
|
Ogieglo W, Genduso G, Rubner J, Hofmann-Préveraud de Vaumas J, Wessling M, Pinnau I. CO 2/CH 4 Pure- and Mixed-Gas Dilation and Sorption in Thin (∼500 nm) and Ultrathin (∼50 nm) Polymers of Intrinsic Microporosity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wojciech Ogieglo
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | - Giuseppe Genduso
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | - Jens Rubner
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
| | | | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Ingo Pinnau
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Durďáková TM, Hrdlička Z, Dendisová M, Švecová M, Vopička O. Swelling and plasticization of PDMS and PTMSP in methanol and dimethyl carbonate vapors and liquids: Volume, mechanical properties, Raman spectra. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ahmad MZ, Peters TA, Konnertz NM, Visser T, Téllez C, Coronas J, Fila V, de Vos WM, Benes NE. High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115858] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Ogieglo W, Ghanem B, Ma X, Wessling M, Pinnau I. High-Pressure CO 2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11369-11376. [PMID: 29528618 DOI: 10.1021/acsami.8b01402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, nrel, it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in nrel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO2, the effective reduction of the Tg was estimated to be ∼200 °C going from 128 to 7 nm films.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- DWI Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52074 Aachen , Germany
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal, Jeddah 23955-6900 , Kingdom of Saudi Arabia
| | - Bader Ghanem
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal, Jeddah 23955-6900 , Kingdom of Saudi Arabia
| | - Xiaohua Ma
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal, Jeddah 23955-6900 , Kingdom of Saudi Arabia
| | - Matthias Wessling
- DWI Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52074 Aachen , Germany
| | - Ingo Pinnau
- Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal, Jeddah 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Ogieglo W, Furchner A, Ghanem B, Ma X, Pinnau I, Wessling M. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1. J Phys Chem B 2017; 121:10190-10197. [PMID: 29023118 DOI: 10.1021/acs.jpcb.7b10061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Andreas Furchner
- Leibniz-Institute für Analytische Wissenschaften - ISAS - e.V. , Schwarzschildstrasse 8, 12489 Berlin, Germany
| | - Bader Ghanem
- King Abdullah University of Science and Technology (KAUST) , Advanced Membranes and Porous Materials Center (AMPMC), Al-Jazri Building 4, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xiaohua Ma
- King Abdullah University of Science and Technology (KAUST) , Advanced Membranes and Porous Materials Center (AMPMC), Al-Jazri Building 4, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ingo Pinnau
- King Abdullah University of Science and Technology (KAUST) , Advanced Membranes and Porous Materials Center (AMPMC), Al-Jazri Building 4, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
12
|
Stanford JP, Pfromm PH, Rezac ME. Effect of vapor phase ethylenediamine crosslinking of matrimid on alcohol vapor sorption and diffusion. J Appl Polym Sci 2017. [DOI: 10.1002/app.44771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- John P. Stanford
- Department of Chemical EngineeringKansas State University1005 Durland Hall, 1701A Platt StreetManhattan Kansas66506‐5102
- IGERT in Biorefining, Kansas State UniversityManhattan Kansas66506‐5102
| | - Peter H. Pfromm
- Department of Chemical EngineeringKansas State University1005 Durland Hall, 1701A Platt StreetManhattan Kansas66506‐5102
| | - Mary E. Rezac
- IGERT in Biorefining, Kansas State UniversityManhattan Kansas66506‐5102
| |
Collapse
|
13
|
Ogieglo W, Rahimi K, Rauer SB, Ghanem B, Ma X, Pinnau I, Wessling M. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1? J Phys Chem B 2017; 121:7210-7220. [PMID: 28703006 DOI: 10.1021/acs.jpcb.7b03891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p0), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition Pg has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Khosorov Rahimi
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Sebastian Bernhard Rauer
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Bader Ghanem
- Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST) , Al-Jazri Building 4, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaohua Ma
- Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST) , Al-Jazri Building 4, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST) , Al-Jazri Building 4, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
14
|
Chebil MS, Vignaud G, Bal JK, Beuvier T, Delorme N, Grohens Y, Gibaud A. Reversibility in glass transition behavior after erasing stress induced by spin coating process. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Stanford JP, Maier AL, McDonald LA, Pfromm PH, Rezac ME. Kinetic and equilibrium sorption of organic liquids and vapors in Matrimid. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Marcon V, van der Vegt NFA. How does low-molecular-weight polystyrene dissolve: osmotic swelling vs. surface dissolution. SOFT MATTER 2014; 10:9059-9064. [PMID: 25300931 DOI: 10.1039/c4sm01636j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.
Collapse
Affiliation(s)
- Valentina Marcon
- Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|