1
|
Mukherjee S, Singh RK, James M, Ray SS. Anomalous Diffusion and Lévy Walks Distinguish Active from Inertial Turbulence. PHYSICAL REVIEW LETTERS 2021; 127:118001. [PMID: 34558935 DOI: 10.1103/physrevlett.127.118001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Bacterial swarms display intriguing dynamical states like active turbulence. Now, using a hydrodynamic model, we show that such dense active suspensions manifest superdiffusion, via Lévy walks, which masquerades as a crossover from ballistic to diffusive scaling in measurements of mean-squared displacements, and is tied to the emergence of hitherto undetected oscillatory streaks in the flow. Thus, while laying the theoretical framework of an emergent advantageous strategy in the collective behavior of microorganisms, our Letter underlines the essential differences between active and inertial turbulence.
Collapse
Affiliation(s)
- Siddhartha Mukherjee
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| | - Rahul K Singh
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| | | | - Samriddhi Sankar Ray
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| |
Collapse
|
2
|
Martini F, Carignani E, Nardelli F, Rossi E, Borsacchi S, Cettolin M, Susanna A, Geppi M, Calucci L. Glassy and Polymer Dynamics of Elastomers by 1H Field-Cycling NMR Relaxometry: Effects of Cross-Linking. Macromolecules 2020; 53:10028-10039. [PMID: 33250523 PMCID: PMC7690040 DOI: 10.1021/acs.macromol.0c01439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/20/2020] [Indexed: 11/28/2022]
Abstract
![]()
1H spin lattice relaxation
rate (R1) dispersions were acquired by
field-cycling (FC) NMR relaxometry
between 0.01 and 35 MHz over a wide temperature range on polyisoprene
(IR), polybutadiene (BR), and poly(styrene-co-butadiene)
(SBR) rubbers, obtained by vulcanization under different conditions,
and on the corresponding uncured elastomers. By exploiting the frequency–temperature
superposition principle, χ″(ωτs) master curves were constructed by shifting the total FC NMR susceptibility,
χ″(ω) = ωR1(ω),
curves along the frequency axis by the correlation times for glassy
dynamics, τs. Longer τs values and,
correspondingly, higher glass transition temperatures were determined
for the sulfur-cured elastomers with respect to the uncured ones,
which increased by increasing the cross-link density, whereas no significant
changes were found for fragility. The contribution of polymer dynamics,
χpol″(ω), to χ″(ω)
was singled out by subtracting the contribution of glassy dynamics,
χglass″(ω), well represented using a
Cole–Davidson spectral density. For all elastomers, χpol″(ω) was found to represent a small fraction, on the order of
0.05–0.14, of the total χ″(ω), which did
not show a significant dependence on cross-link density. In the investigated
temperature and frequency ranges, polymer dynamics was found to encompass
regimes I (Rouse dynamics) and II (constrained Rouse dynamics) of
the tube reptation model for the uncured elastomers and only regime
I for the vulcanized ones. This is clear evidence that chemical cross-links
impose constraints on chain dynamics on a larger space and time scale
than free Rouse modes.
Collapse
Affiliation(s)
- Francesca Martini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.,Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale Delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Elisa Carignani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.,Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale Delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Nardelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.,Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale Delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Elena Rossi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Silvia Borsacchi
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale Delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| | | | | | - Marco Geppi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.,Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale Delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Lucia Calucci
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale Delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
3
|
Deng B, Huang L, Shi Y. Solvent Effect on the Diffusion of Unentangled Linear Polymer Melts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11845-11850. [PMID: 28930634 DOI: 10.1021/acs.langmuir.7b02901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We conducted molecular dynamics (MD) simulations to study how solvent chains affect the diffusion of linear polymers in the unentangled regime. For monodisperse solvent chains, the self-diffusivity of a tagged chain scales with its chain length. The solvent chain length affects both the prefactor and the exponent, the latter of which ranges from -0.79 to -0.85. The scaling exponent here deviates from -1 as predicted by the Rouse model, which may suggest that the friction coefficient increases with the solvent chain length. In addition, we carried out diffusion simulations on two polydisperse melts, one with the Flory-Schulz distribution and the other with the Gaussian distribution. The measured diffusivity as a function of the tagged chain length agrees with a simple proposed model accounting for the heterogeneous medium.
Collapse
Affiliation(s)
- Binghui Deng
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Liping Huang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Yunfeng Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|