1
|
Romano B, Molaro MC, Somma F, Battisegola C, Failla M, Lazzarato L, Chegaev K, Rolando B, Kopecka J, Ianaro A, Rimoli MG, Della Corte CM, Riganti C, Sodano F, Ercolano G. FS536, a novel nitric oxide-releasing doxorubicin hybrid, reverts multidrug resistance in lung cancer cells. J Control Release 2025; 382:113732. [PMID: 40228667 DOI: 10.1016/j.jconrel.2025.113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The design of molecular hybrids that chemically conjugate nitric oxide (NO)-donors with anticancer drugs, offering site-specific and time-controlled properties, is a promising strategy in cancer therapy. In this work, we designed, synthesized, and characterized a novel doxorubicin (DOXO)-NO-donor hybrid, named FS536, by chemically conjugating DOXO with a diazeniumdiolate moiety. Upon incubation in human serum, FS536 simultaneously released both DOXO and NO through enzymatic hydrolysis. FS536 significantly inhibited the proliferation of the DOXO-resistant A549 lung cancer cell line (A549-DR), overcoming the resistance typically observed with DOXO alone. This enhanced efficacy is attributed to the release of NO, which induces the nitration of the MRP1 efflux pump, reducing its activity, increasing intracellular drug concentrations, and thus sensitizing resistant cells to DOXO. Our findings suggest that FS536 is a promising therapeutic strategy for combating multidrug-resistant cancers by leveraging the synergistic effects of DOXO and NO.
Collapse
Affiliation(s)
- Benedetta Romano
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy
| | | | - Fabio Somma
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy
| | - Chiara Battisegola
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy
| | - Mariacristina Failla
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, Molecular Biotechnology Center "G. Tarone", University of Torino, 10126 Torino, Italy
| | - Angela Ianaro
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy
| | | | - Chiara Riganti
- Department of Oncology, Molecular Biotechnology Center "G. Tarone", University of Torino, 10126 Torino, Italy
| | - Federica Sodano
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy.
| | - Giuseppe Ercolano
- Department of Pharmacy, "Federico II" University of Napoli, 80131 Napoli, Italy.
| |
Collapse
|
2
|
Gao C, Li X, Liu T, Wang W, Wu J. An overview of phenylsulfonylfuroxan-based nitric oxide donors for cancer treatment. Bioorg Chem 2025; 154:108020. [PMID: 39657549 DOI: 10.1016/j.bioorg.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule integral to numerous physiological processes, including tumor modulation, cardiovascular regulation, and systemic physiological functions. Its dual role in promoting and inhibiting tumor growth makes it a focal point of contemporary oncological research. Phenylsulfonylfuroxan, a classical NO donor, has been shown to significantly elevate NO levels, thereby inducing apoptosis and inhibiting proliferation and metastasis in tumor cells. It enhances the efficacy of chemotherapy, radiotherapy, and immunotherapy, reverses multidrug resistance (MDR), and impedes tumor progression. Notably, phenylsulfonylfuroxan have the ability to trigger ferroptosis in cancer cells by binding covalently to inhibit glutathione peroxidase 4 (GPX4). Recent developments in phenylsulfonylfuroxan-based therapies have positioned them as crucial in the advancement of cancer treatment modalities. This review elucidates the mechanism by which phenylsulfonylfuroxan releases NO and summarizes the significant advancements over the past 16 years in the research and development of phenylsulfonylfuroxan conjugates with various anticancer agents for targeted cancer therapy.
Collapse
Affiliation(s)
- Chao Gao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xingyu Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Tong Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59697-59720. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
4
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
5
|
Gazieva GA, Chegaev K. Special Issue "Development and Synthesis of Biologically Active Compounds". Int J Mol Sci 2024; 25:4015. [PMID: 38612824 PMCID: PMC11012345 DOI: 10.3390/ijms25074015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The intention of this Special Issue is to focus on new achievements in the design, preparation, and in vitro and in vivo biological evaluation of bioactive molecules that can result in the development of natural or artificial potent compounds looking for promising pharmaceuticals and agrochemicals [...].
Collapse
Affiliation(s)
- Galina A. Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy;
| |
Collapse
|
6
|
Sodano F, Rolando B, Lazzarato L, Costamagna C, Failla M, Riganti C, Chegaev K. Use of Enzymatically Activated Carbon Monoxide Donors for Sensitizing Drug-Resistant Tumor Cells. Int J Mol Sci 2023; 24:11258. [PMID: 37511019 PMCID: PMC10379931 DOI: 10.3390/ijms241411258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The application of gaseous signaling molecules like NO, H2S or CO to overcome the multidrug resistance in cancer treatment has proven to be a viable therapeutic strategy. The development of CO-releasing molecules (CORMs) in a controlled manner and in targeted tissues remains a challenge in medicinal chemistry. In this paper, we describe the design, synthesis and chemical and enzymatic stability of a novel non-metal CORM (1) able to release intracellularly CO and, simultaneously, facilitate fluorescent degradation of products under the action of esterase. The toxicity of 1 against different human cancer cell lines and their drug-resistant counterparts, as well as the putative mechanism of toxicity were investigated. The drug-resistant cancer cell lines efficiently absorbed 1 and 1 was able to restore their sensitivity vs. chemotherapeutic drugs by causing a CO-dependent mitochondrial oxidative stress that culminated in mitochondrial-dependent apoptosis. These results demonstrate the importance of CORMs in cases where conventional chemotherapy fails and thus open the horizons towards new combinatorial strategies to overcome multidrug resistance.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | | | - Mariacristina Failla
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10125 Torino, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
7
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
8
|
Nassar MY, El-Salhy HI, El-Shiwiny WH, Abdelaziz G, El-Shiekh R. Composite Nanoarchitectonics of Magnetic Silicon Dioxide-Modified Chitosan for Doxorubicin Delivery and In Vitro Cytotoxicity Assay. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
Abstract
AbstractDeveloping drug delivery carriers for highly selective, controlled, and sustained release of the anti-cancer drugs is one of the crucial issues in the cancer strive. We herein report the synthesis of Fe3O4 (M) and SiO2 (S) nanoparticles and their nanocomposites with chitosan (CS) for high loading efficiency and subsequent release potentiality of Doxorubicin (DOX) anticancer drug. The as-synthesized nanostructures were characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and thermal analysis techniques. The average crystallite sizes of the as-prepared M, S, CS/M, CS/S, and CS/M/S nanostructures were found to be 5, 15, 70, 22, and 29 nm, respectively. The loading and cumulative release of Doxorubicin for the produced nanostructures were examined, and the results exhibited loading efficacy of 71%, 95%, 96%, 79%, 17%, and 42% for M, S, CS, CS/M, CS/S, and CS/M/S nanostructures, respectively. The Doxorubicin releasing results revealed a promising cumulative release percentages at pH 4.2 and pH 5 compared with those at pH 7.4. At pH 4.2, the cumulative release percentages for DOX-M, DOX-S, DOX-CS, DOX/M, and DOX/CS/M/S were 94%, 96%, 92%, 95%, and 98%, respectively. While the corresponding percentages at pH 5 were 97%, 90%, 46%, 43%, and 70%. The percentage for DOX-CS/S was 60% at pH 5, though. The in-vitro cytotoxicity of M-DOX, CS-DOX, and M/CS-DOX was explored against two human cancer cell lines (MCF-7 and Hep-G2) using SRB (Sulforhodamine B) assay. The DOX-loaded M/CS exhibited the highest cytotoxicity and its IC50 values were 2.65 and 2.25 μg/mL against Hep-G2 and MCF-7 cell lines, respectively, compared to the corresponding values of 5.1 and 4.5 μg/mL for free DOX. The results indicated that M/CS nanocomposite is a good candidate as drug delivery nano-carrier for the Doxorubicin anti-cancer drug.
Collapse
|
9
|
The Nitric Oxide Donor [Zn(PipNONO)Cl] Exhibits Antitumor Activity through Inhibition of Epithelial and Endothelial Mesenchymal Transitions. Cancers (Basel) 2022; 14:cancers14174240. [PMID: 36077778 PMCID: PMC9454450 DOI: 10.3390/cancers14174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Nitric oxide (NO) plays a critical pathophysiological role in cancer by modulating several processes, such as angiogenesis, tumor growth, and metastatic potential. The aim of this study was to characterize the antitumor effects of a novel NO donor, [Zn(PipNONO)Cl], on the processes of epithelial– and endothelial–mesenchymal transitions (EMT and EndMT), known to actively participate in cancer progression. Two tumor cells lines were used in this study: human lung cancer cells (A549) and melanoma cells (A375), alone and co-cultured with human endothelial cells. Our results demonstrate that both tumor and endothelial cells were targets of NO action, which impaired EMT and EndMT functional and molecular features. Further studies are needed to finalize the therapeutic use of the novel NO donor. Abstract Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial–mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-β1 (TGF-β1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-β1, and restoration of the epithelial marker E-cadherin, reduced by TGF-β1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial–mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes.
Collapse
|
10
|
Parisi C, Moret F, Fraix A, Menilli L, Failla M, Sodano F, Conte C, Quaglia F, Reddi E, Sortino S. Doxorubicin-NO Releaser Molecular Hybrid Activatable by Green Light to Overcome Resistance in Breast Cancer Cells. ACS OMEGA 2022; 7:7452-7459. [PMID: 35284722 PMCID: PMC8908524 DOI: 10.1021/acsomega.1c03988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The biological activity of a molecular hybrid (DXNO-GR) joining doxorubicin (DOX) and an N-nitroso moiety releasing nitric oxide (NO) under irradiation with the biocompatible green light has been investigated against DOX-sensitive (MCF7) and -resistant (MDA-MB-231) breast cancer cells in vitro. DXNO-GR shows significantly higher cellular internalization than DOX in both cell lines and, in contrast to DOX, does not experience cell efflux in MDR overexpressing MDA-MB-231 cells. The higher cellular internalization of the DXNO-GR hybrid seems to be mediated by bovine serum albumin (BSA) as a suitable carrier among serum proteins, according to the high binding constant measured for DXNO-GR, which is more than one order of magnitude larger than that reported for DOX. Despite the higher cellular accumulation, DXNO-GR is not toxic in the dark but induces remarkable cell death following photoactivation with green light. This lack of dark toxicity is strictly related to the different cellular compartmentalization of the molecular hybrid that, different from DOX, does not localize in the nucleus but is mainly confined in the Golgi apparatus and endoplasmic reticulum and therefore does not act as a DNA intercalator. The photochemical properties of the hybrid are not affected by binding to BSA as demonstrated by the direct detection of NO photorelease, suggesting that the reduction of cell viability observed under light irradiation is a combined effect of DOX phototoxicity and NO release which, ultimately, inhibits MDR1 efflux pump in DOX-resistant cells.
Collapse
Affiliation(s)
- Cristina Parisi
- Department
of Drug and Health Sciences, University
of Catania, I-95125 Catania, Italy
| | - Francesca Moret
- Department
of Biology, University of Padova, I-35131 Padova, Italy
| | - Aurore Fraix
- Department
of Drug and Health Sciences, University
of Catania, I-95125 Catania, Italy
| | - Luca Menilli
- Department
of Biology, University of Padova, I-35131 Padova, Italy
| | - Mariacristina Failla
- Department
of Science and Drug Technology, University
of Torino, I-10125 Torino, Italy
| | - Federica Sodano
- Department
of Drug and Health Sciences, University
of Catania, I-95125 Catania, Italy
- Department
of Science and Drug Technology, University
of Torino, I-10125 Torino, Italy
| | - Claudia Conte
- Drug
Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Fabiana Quaglia
- Drug
Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Elena Reddi
- Department
of Biology, University of Padova, I-35131 Padova, Italy
| | - Salvatore Sortino
- Department
of Drug and Health Sciences, University
of Catania, I-95125 Catania, Italy
| |
Collapse
|
11
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
12
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
13
|
Ramazani A, Karimi M, Hosseinzadeh Z, Rezayati S, Hanifehpour Y, Joo SW. Syntheses and Antitumor Properties of Furoxan Derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208183751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death in Iran, next to heart disease. Current
therapy suffers from the major limitations of side effects and drug resistance, so the characterization
of new structures that can be power-selective and less-toxic anticancer agents is the
main challenge to medicinal chemistry research. Furoxan (1,2,5-oxadiazole-2-oxide) is a crucial
compound with many medicinal and pharmaceutical properties. The most important aspect
of furoxan is the nitric oxide (NO) molecule. One of the most essential furoxan derivatives,
which could be utilized in medicinal goals and pharmaceutical affairs, is benzofuroxan.
Furoxan could be described as a NO-donating compound in a variety of reactions, which
could also appear as hybridised with different medicinal compounds. This review article presents
a summary of syntheses and antitumor properties of furoxan derivatives as possible
chemotherapy agents for cancer. Furoxan can inhibit tumor growth in vivo without any side
effects in normal cells. Furthermore, due to NO-releasing in high levels in vivo and a wide
range of anticancer compounds, furoxan derivatives and especially its hybridised compounds could be considered as
antitumor, cytotoxic and apoptosis compounds to be applied in the human body.
Collapse
Affiliation(s)
- Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Masoud Karimi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Zahra Hosseinzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Younes Hanifehpour
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
14
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
15
|
Fraix A, Parisi C, Failla M, Chegaev K, Spyrakis F, Lazzarato L, Fruttero R, Gasco A, Sortino S. NO release regulated by doxorubicin as the green light-harvesting antenna. Chem Commun (Camb) 2021; 56:6332-6335. [PMID: 32435776 DOI: 10.1039/d0cc02512g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report for the first time a NO photodonor (NOPD) operating with the widely used chemotherapeutic agent doxorubicin (DOX) as the light-harvesting antenna. This permits NO uncaging from an N-nitroso appendage upon selective excitation of DOX with highly biocompatible green light, without precluding its typical red emission. This NOPD effectively binds DNA and photodelivers NO nearby, representing an intriguing candidate for potential multimodal therapeutic applications based on the combination of DOX and NO.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Mariacristina Failla
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy. and Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Alberto Gasco
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
16
|
Ge L, Wu J, Wang C, Zhang F, Liu Z. Engineering artificial switchable nanochannels for selective monitoring of nitric oxide release from living cells. Biosens Bioelectron 2020; 169:112606. [DOI: 10.1016/j.bios.2020.112606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/22/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|
17
|
In vitro vascular toxicity assessment of NitDOX, a novel NO-releasing doxorubicin. Eur J Pharmacol 2020; 880:173164. [PMID: 32437742 DOI: 10.1016/j.ejphar.2020.173164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
The conjugation of doxorubicin (DOX) with nitric oxide (NO)-releasing groups gave rise to novel anthracyclines, such as nitrooxy-DOX (NitDOX), capable to overcome multidrug resistance. The widely described anthracycline cardiovascular toxicity, however, might limit their clinical use. This study aimed to investigate NitDOX-induced effects, as potential hazard, on vascular smooth muscle A7r5 and endothelial EA.hy926 cell viability, on the mechanical activity of freshly and cultured rat aorta rings, as well as on Cav1.2 channels of A7r5 cells. DOX was used as a reference compound. Although an increase in intracellular radicals and a reduction in mitochondrial potential occurred upon treatment with both drugs, A7r5 and EA.hy926 cells proved to be more sensitive to DOX than to NitDOX. Both compounds promoted comparable effects in A7r5 cells, whereas NitDOX was less active than DOX in inducing DNA damage and in eliciting apoptotic-mediated cell death revealed as an increase in sub-diploid-, DAPI- and annexin V-positive- EA.hy926 cell percentage. Moreover, in EA.hy926 cells, NitDOX doubled basal NO content, while preincubation with the NO-scavenger PTIO increased NitDOX-induced cytotoxicity. DOX exhibited a negligible contracturing effect in endothelium-intact rings, while NitDOX induced a significant ODQ-sensible, vasodilation in endothelium-denuded rings. In arteries cultured with both drugs for 7 days, NitDOX prevented either phenylephrine- or KCl-induced contraction at a concentration 10-fold higher than that of DOX. These results demonstrate that NitDOX displays a more favourable vascular toxicity profile than DOX. Taking into account its greater efficacy against drug-resistant cells, NitDOX is worth of further investigations in preclinical and clinical settings.
Collapse
|
18
|
Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M. Nitric Oxide (NO) and NO Synthases (NOS)-Based Targeted Therapy for Colon Cancer. Cancers (Basel) 2020; 12:E1881. [PMID: 32668616 PMCID: PMC7408898 DOI: 10.3390/cancers12071881] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies worldwide and CRC therapy remains unsatisfactory. In recent decades, nitric oxide (NO)-a free-radical gas-plus its endogenous producer NO synthases (NOS), have attracted considerable attention. NO exerts dual effects (pro- and anti-tumor) in cancers. Endogenous levels of NO promote colon neoplasms, whereas exogenously sustained doses lead to cytotoxic functions. Importantly, NO has been implicated as an essential mediator in many signaling pathways in CRC, such as the Wnt/β-catenin and extracellular-signal-regulated kinase (ERK) pathways, which are closely associated with cancer initiation, metastasis, inflammation, and chemo-/radio-resistance. Therefore, NO/NOS have been proposed as promising targets in the regulation of CRC carcinogenesis. Clinically relevant NO-donating agents have been developed for CRC therapy to deliver a high level of NO to tumor sites. Notably, inducible NOS (iNOS) is ubiquitously over-expressed in inflammatory-associated colon cancer. The development of iNOS inhibitors contributes to targeted therapies for CRC with clinical benefits. In this review, we summarize the multifaceted mechanisms of NO-mediated networks in several hallmarks of CRC. We review the clinical manifestation and limitations of NO donors and NOS inhibitors in clinical trials. We also discuss the possible directions of NO/NOS therapies in the immediate future.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Shuang Zhou
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yan Li
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yue Zhou
- Department of Statistics, North Dakota University, Fargo, ND 58105, USA;
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
19
|
Borgini M, Zamperini C, Poggialini F, Ferrante L, Summa V, Botta M, Fabio RD. Synthesis and Antiproliferative Activity of Nitric Oxide-Donor Largazole Prodrugs. ACS Med Chem Lett 2020; 11:846-851. [PMID: 32435394 PMCID: PMC7236235 DOI: 10.1021/acsmedchemlett.9b00643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
The marine natural product Largazole is the most potent Class I HDAC inhibitor identified to date. Since its discovery, many research groups have been attracted by the structural complexity and the peculiar anticancer activity, due to its capability to discriminate between tumor cells and normal cells. Herein, we discuss the synthesis and the in vitro biological profile of hybrid analogues of Largazole, as dual HDAC inhibitor and nitric oxide (NO) donors, potentially useful as anticancer agents. In particular, the metabolic stability of the modified thioester moiety of Largazole, bearing the NO-donor function/s, the in vitro release of NO, and the antiproliferative activity in tumor cell lines are presented.
Collapse
Affiliation(s)
- Matteo Borgini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
| | - Federica Poggialini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | - Vincenzo Summa
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
- Biotechnology
College of Science and Technology, Temple
University, BioLife Science
Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milano, Italy
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| |
Collapse
|
20
|
Fraix A, Conte C, Gazzano E, Riganti C, Quaglia F, Sortino S. Overcoming Doxorubicin Resistance with Lipid-Polymer Hybrid Nanoparticles Photoreleasing Nitric Oxide. Mol Pharm 2020; 17:2135-2144. [PMID: 32286080 DOI: 10.1021/acs.molpharmaceut.0c00290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report on tailored lipid-polymer hybrid nanoparticles (NPs) delivering nitric oxide (NO) under the control of visible light as a tool for overcoming doxorubicin (DOX) resistance. The NPs consist of a polymeric core and a coating. They are appropriately designed to entrap DOX in the poly(lactide-co-glycolide) core and a NO photodonor (NOPD) in the phospholipid shell to avoid their mutual interaction both in the ground and excited states. The characteristic red fluorescence of DOX, useful for its tracking in cells, is well preserved upon incorporation within the NPs, even in the copresence of NOPD. The NP scaffold enhances the NO photoreleasing efficiency of the entrapped NOPD when compared with that of the free compound, and the copresence of DOX does not significantly affect such enhanced photochemical performance. Besides, the delivery of DOX and NOPD from NPs is also not mutually influenced. Experiments carried out in M14 DOX-resistant melanoma cells demonstrate that NO release from the multicargo NPs can be finely regulated by excitation with visible light, at a concentration level below the cytotoxic doses but sufficient enough to inhibit the efflux transporters mostly responsible for DOX cellular extrusion. This results in increased cellular retention of DOX with consequent enhancement of its antitumor activity. This approach, in principle, is not dependent on the type of chemotherapeutic used and may pave the way for new treatment modalities based on the photoregulated release of NO to overcome the multidrug resistance phenomenon and improve cancer chemotherapies.
Collapse
Affiliation(s)
- Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Elena Gazzano
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | - Chiara Riganti
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
21
|
Shen R, Qian Y. A turn-on and lysosome-targeted fluorescent NO releaser in water media and its application in living cells and zebrafishes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118024. [PMID: 31954359 DOI: 10.1016/j.saa.2019.118024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Due to the high activity and difficult to transport of nitric oxide, the controlled release of nitric oxide has been a new trend in the research on the biological effect of nitric oxide. In this paper, a water-soluble and turn-on fluorescent NO donor Rh-NO was synthesized. Upon 525 nm irradiation, the fluorescence of the Rh-NO at 568 nm enhanced with the quantum yield (ΦF) of Rh-NO changing from 5.08% to 35.96%. The mechanism of NO releasing was proved by HRMS and the Dan. The releasing time of 6 min and the releasing yield of 0.61 proved the superiority of Rh-NO. Excellent cell activity above 80% of Rh-NO and Rh guaranteed that nitric oxide was released from Rh-NO in lysosome and zebrafishes successfully, which provided a good platform to understand the biological effects of nitric oxide in lysosomes.
Collapse
Affiliation(s)
- Ronghua Shen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| |
Collapse
|
22
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
23
|
Wan Q, Deng Y, Huang Y, Yu Z, Wang C, Wang K, Dong J, Chen Y. Synthesis and Antitumor Evaluation of Novel Hybrids of Phenylsulfonylfuroxan and Estradiol Derivatives. ChemistryOpen 2020; 9:176-182. [PMID: 32025462 PMCID: PMC6996566 DOI: 10.1002/open.201900228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Fifteen novel furoxan-based nitric oxide (NO) releasing hybrids of estradiol derivatives were synthesized and evaluated in vitro anti-proliferative activity in MDA-MB-231, A2780, Hela and HUVEC cell lines. Most of them displayed potent anti-proliferative effects. Among the compounds, 4-bromo-3-((phenylsulfonyl)-1,2,5-oxadiazole 2-oxide)-oxy-propoxy-estradiol (11 b) exhibited the best activity with IC50 values of 3.58-0.0008 μM. Preliminary pharmacological studies showed that 11 b induced apoptosis and hardly affected the cell cycle of MDA-MB-231 cell line. NO-releasing capacity and inhibition of ERK/MAPK pathway signaling might explain the potent antineoplastic activity of these compounds. The preliminary structure-activity relationship (SAR) showed that steroidal scaffolds with a linker in 3-position were favorable moieties to evidently increase the bioactivities of these hybrids. Overall, these results implied that 11 b merited to be further investigated as a promising anti-cancer candidate.
Collapse
Affiliation(s)
- Qi Wan
- Department of Medicinal Chemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Yan Deng
- Department of Pharmacology and Biochemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Yaoqing Huang
- Department of Medicinal Chemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Zhihui Yu
- Department of Medicinal Chemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Chunli Wang
- Department of Medicinal Chemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Ke Wang
- Department of Medicinal Chemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Jibin Dong
- Department of Pharmacology and Biochemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| | - Ying Chen
- Department of Medicinal Chemistry School of PharmacyFudan University826, Zhangheng RoadShanghaiChina
| |
Collapse
|
24
|
Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics 2019; 11:E381. [PMID: 31382369 PMCID: PMC6722551 DOI: 10.3390/pharmaceutics11080381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
The folate receptor (FR) is a tumor-associated antigen that can bind with folic acid (FA) and its conjugates with high affinity and ingests the bound molecules inside the cell via the endocytic mechanism. A wide variety of payloads can be delivered to FR-overexpressed cells using folate as the ligand, ranging from small drug molecules to large DNA-containing macromolecules. A broad range of folate attached liposomes have been proven to be highly effective as the targeted delivery system. For the rational design of folate-targeted liposomes, an intense conceptual understanding combining chemical and biomedical points of view is necessary because of the interdisciplinary nature of the field. The fabrication of the folate-conjugated liposomes basically involves the attachment of FA with phospholipids, cholesterol or peptides before liposomal formulation. The present review aims to provide detailed information about the design and fabrication of folate-conjugated liposomes using FA attached uncleavable/cleavable phospholipids, cholesterol or peptides. Advances in the area of folate-targeted liposomes and their biomedical applications have also been discussed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
25
|
Porshneva K, Papiernik D, Psurski M, Łupicka-Słowik A, Matkowski R, Ekiert M, Nowak M, Jarosz J, Banach J, Milczarek M, Goszczyński TM, Sieńczyk M, Wietrzyk J. Temporal inhibition of mouse mammary gland cancer metastasis by CORM-A1 and DETA/NO combination therapy. Theranostics 2019; 9:3918-3939. [PMID: 31281522 PMCID: PMC6587338 DOI: 10.7150/thno.31461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide and nitric oxide are two of the most important vasoprotective mediators. Their downregulation observed during vascular dysfunction, which is associated with cancer progression, leads to uncontrolled platelet activation. Therefore, the aim of our studies was to improve vasoprotection and to decrease platelet activation during progression of mouse mammary gland cancer by concurrent use of CO and NO donors (CORM-A1 and DETA/NO, respectively). Methods: Mice injected intravenously with 4T1-luc2-tdTomato or orthotopically with 4T1 mouse mammary gland cancer cells were treated with CORM-A1 and DETA/NO. Ex vivo aggregation and activation of platelets were assessed in the blood of healthy donors and breast cancer patients. Moreover, we analyzed the compounds' direct effect on 4T1 mouse and MDA-MB-231 human breast cancer cells proliferation, adhesion and migration in vitro. Results: We have observed antimetastatic effect of combination therapy, which was only transient in orthotopic model. During early stages of tumor progression concurrent use of CORM-A1 and DETA/NO demonstrated vasoprotective ability (decreased endothelin-1, sICAM and sE-selectin plasma level) and downregulated platelets activation (decreased bound of fibrinogen and vWf to platelets) as well as inhibited EMT process. Combined treatment with CO and NO donors diminished adhesion and migration of breast cancer cells in vitro and inhibited aggregation as well as TGF-β release from breast cancer patients' platelets ex vivo. However, antimetastatic effect was not observed at a later stage of tumor progression which was accompanied by increased platelets activation and endothelial dysfunction related to a decrease of VASP level. Conclusion: The therapy was shown to have antimetastatic action and resulted in normalization of endothelial metabolism, diminution of platelet activation and inhibition of EMT process. The effect was more prominent during early stages of tumor dissemination. Such treatment could be applied to inhibit metastasis during the first stages of this process.
Collapse
Affiliation(s)
- Kseniia Porshneva
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Łupicka-Słowik
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology and Clinical Oncology; Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Ekiert
- Division of Surgical Oncology and Clinical Oncology; Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Nowak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz M. Goszczyński
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
26
|
Alimoradi H, Greish K, Gamble AB, Giles GI. Controlled Delivery of Nitric Oxide for Cancer Therapy. Pharm Nanotechnol 2019; 7:279-303. [PMID: 31595847 PMCID: PMC6967185 DOI: 10.2174/2211738507666190429111306] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 04/13/2023]
Abstract
Nitric oxide (NO) is a short-lived, endogenously produced, signaling molecule which plays multiple roles in mammalian physiology. Underproduction of NO is associated with several pathological processes; hence a broad range of NO donors have emerged as potential therapeutics for cardiovascular and respiratory disorders, wound healing, the immune response to infection, and cancer. However, short half-lives, chemical reactivity, rapid systemic clearance, and cytotoxicity have hindered the clinical development of most low molecular weight NO donors. Hence, for controlled NO delivery, there has been extensive effort to design novel NO-releasing biomaterials for tumor targeting. This review covers the effects of NO in cancer biology, NO releasing moieties which can be used for NO delivery, and current advances in the design of NO releasing biomaterials focusing on their applications for tumor therapy.
Collapse
Affiliation(s)
| | - Khaled Greish
- Address correspondence to these authors at the Department of Molecular Medicine and Nanomedicine Unit, Princess
Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, College of Medicine and Medical Sciences,
Arabian Gulf University, Manama, Kingdom of Bahrain; Tel: +973 17 237 393; E-mail: and Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; Tel: +6434797322;, E-mail:
| | | | - Gregory I. Giles
- Address correspondence to these authors at the Department of Molecular Medicine and Nanomedicine Unit, Princess
Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, College of Medicine and Medical Sciences,
Arabian Gulf University, Manama, Kingdom of Bahrain; Tel: +973 17 237 393; E-mail: and Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; Tel: +6434797322;, E-mail:
| |
Collapse
|
27
|
Budaev AB, Ivanov AV, Petrova OV, Samsonov VA, Ushakov IA, Tikhonov AY, Sobenina LN, Trofimov BA. 1,2,5-Oxadiazolo[3,4-g]indoles via annelation of 6,7-dihydrobenzo[c][1,2,5]oxadiazol-4(5H)-one oxime with acetylene. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance. Eur J Med Chem 2018; 159:381-392. [DOI: 10.1016/j.ejmech.2018.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
29
|
Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 2018; 8:862-880. [PMID: 30505656 PMCID: PMC6251809 DOI: 10.1016/j.apsb.2018.05.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial targeting is a promising approach for solving current issues in clinical application of chemotherapy and diagnosis of several disorders. Here, we discuss direct conjugation of mitochondrial-targeting moieties to anticancer drugs, antioxidants and sensor molecules. Among them, the most widely applied mitochondrial targeting moiety is triphenylphosphonium (TPP), which is a delocalized cationic lipid that readily accumulates and penetrates through the mitochondrial membrane due to the highly negative mitochondrial membrane potential. Other moieties, including short peptides, dequalinium, guanidine, rhodamine, and F16, are also known to be promising mitochondrial targeting agents. Direct conjugation of mitochondrial targeting moieties to anticancer drugs, antioxidants and sensors results in increased cytotoxicity, anti-oxidizing activity and sensing activity, respectively, compared with their non-targeting counterparts, especially in drug-resistant cells. Although many mitochondria-targeted anticancer drug conjugates have been investigated in vitro and in vivo, further clinical studies are still needed. On the other hand, several mitochondria-targeting antioxidants have been analyzed in clinical phases I, II and III trials, and one conjugate has been approved for treating eye disease in Russia. There are numerous ongoing studies of mitochondria-targeted sensors.
Collapse
Key Words
- (Fx, r)3, (l-cyclohexyl alanine-d-arginine)3
- 4-AT, 4-amino-TEMPO
- 5-FU, 5-Fluorouracil
- AD, Alzheimer׳s disease
- AIE, aggregation-induced emission
- ATP, adenosine triphosphate
- Anticancer agents
- Antioxidants
- Arg, arginine
- Aβ, beta amyloid
- BODIPY, boron-dipyrromethene
- C-dots, carbon dots
- CAT, catalase
- COX, cytochrome c oxidase
- CZBI, carbazole and benzo[e]indolium
- CoA, coenzyme A
- DDS, drug delivery system
- DEPMPO, 5-(diethylphosphono)-5-methyl-1-pyrroline N-oxide
- DIPPMPO, 5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide
- DQA, dequalinium
- Direct conjugation
- Dmt, dimethyltyrosine
- EPR, enhanced permeability and retention
- F16, (E)-4-(1H-indol-3-ylvinyl)-N-methylpyridinium iodide
- GPX, glutathione peroxidase
- GS, gramicidin S
- HTPP, 5-(4-hydroxy-phenyl)-10,15,20-triphenylporphyrin
- IMM, inner mitochondrial membrane
- IMS, intermembrane space
- IOA, imidazole-substituted oleic acid
- LA, lipoic acid
- LAH2, dihydrolipoic acid
- Lys, lysine
- MET, mesenchymal-epithelial transition
- MLS, mitochondria localization sequences
- MPO, myeloperoxidase
- MPP, mitochondria-penetrating peptides
- MitoChlor, TPP-chlorambucil
- MitoE, TPP-vitamin E
- MitoLA, TPP-lipoic acid
- MitoQ, TPP-ubiquinone
- MitoVES, TPP-vitamin E succinate
- Mitochondria-targeting
- Nit, nitrooxy
- NitDOX, nitrooxy-DOX
- OMM, outer mitochondrial membrane
- OXPHOS, oxidative phosphorylation
- PD, Parkinson׳s disease
- PDT, photodynamic therapy
- PET, photoinduced electron transfer
- PS, photosensitizer
- PTPC, permeability transition pore complex
- Phe, phenylalanine
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SS peptide, Szeto-Schiller peptides
- Sensing agents
- SkQ1, Skulachev ion-quinone
- TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl
- TPEY-TEMPO, [2-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-ylimino)-ethyl]-triphenyl-phosphonium
- TPP, triphenylphosphonium
- Tyr, tyrosine
- VDAC/ANT, voltage-dependent anion channel/adenine nucleotide translocase
- VES, vitamin E succinate
- XO, xanthine oxidase
- mitoTEMPO, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium)
- mtCbl, (Fx,r)3-chlorambucil
- mtDNA, mitochondrial DNA
- mtPt, mitochondria-targeting (Fx,r)3-platinum(II)
- nDNA, nuclear DNA
- αTOS, alpha-tocopheryl succinate.
Collapse
Affiliation(s)
- Gantumur Battogtokh
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Dong Seop Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Sang Jun Park
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
30
|
Guo Y, Wang Y, Li H, Wang K, Wan Q, Li J, Zhou Y, Chen Y. Novel Nitric Oxide Donors of Phenylsulfonylfuroxan and 3-Benzyl Coumarin Derivatives as Potent Antitumor Agents. ACS Med Chem Lett 2018; 9:502-506. [PMID: 29795767 DOI: 10.1021/acsmedchemlett.8b00125] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
In this work, five new hybrids of phenylsulfonylfuroxan merging 3-benzyl coumarin and their seco-B-ring derivatives 2-6 were designed and synthesized. Among them, compound 3 showed the most potent antiproliferation activities with IC50 values range from 0.5 to 143 nM against nine drug-sensitive and four drug-resistant cancer cell lines. Preliminary pharmacologic studies showed that these compounds displayed lower toxicities than that of lead compound 1. Compound 3 obviously induced the early apoptosis and hardly affected the cell cycle of A2780, which was significantly different from compound 1. Especially, it gave 559- and 294-fold selectivity antiproliferation activity in P-gp overexpressed drug-resistant cancer cell lines MCF-7/ADR and KB-V compared to their drug-sensitive ones MCF-7 and KB, implying that compounds 2-6 might have an extra mechanism of anti-MDR-cancer with P-gp overexpression.
Collapse
Affiliation(s)
- Yalan Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yujie Wang
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haihong Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qi Wan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jia Li
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
31
|
New NO- and H2S-releasing doxorubicins as targeted therapy against chemoresistance in castration-resistant prostate cancer: in vitro and in vivo evaluations. Invest New Drugs 2018; 36:985-998. [PMID: 29607467 DOI: 10.1007/s10637-018-0590-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Chemotherapy for castration-resistant prostate cancer (CRPC) is only temporarily effective due to the onset of chemoresistance. We investigated the efficacy of NO- and H2S-releasing doxorubicins (NitDox and H2SDox) in overcoming drug resistance and evaluated their safety. New and innovative NO- and H2S-releasing doxorubicins (NitDox and H2SDox) showed a good intracellular accumulation and high cytotoxic activity in vitro in an androgen-independent and doxorubicin-resistant DU-145 prostate cancer cell line. Nude mice were subcutaneously injected with 4*106 DU-145 cells and treated once a week for 3 weeks with 5 mg/kg doxorubicin, NitDox, H2SDox or vehicle, i.p. Animal weight, tumor volume, intra-tumoral drug accumulation, apoptosis and the presence of nitrotyrosine and sulfhydryl (SH) groups within the tumor, were evaluated. Cardiotoxicity was assessed by measuring troponin plasma levels and the left ventricular wall thickness. In vivo, NitDox and H2SDox accumulated inside the tumors, significantly reduced tumor volumes by 60%, increased the percentage of apoptotic cells in both the inner and the outer parts of the tumors and the presence of nitrotyrosine and SH groups. Doxorubicin treatment was associated with reduced body weight and cardiotoxicity. On the contrary, NitDox and H2SDox were well tolerated and had a better safety profile. Combining efficacy with reduced cardiovascular side effects, NitDox and H2SDox are promising novel therapeutic agents for reversing chemoresistance in CRCP.
Collapse
|
32
|
De La Cruz LKC, Benoit SL, Pan Z, Yu B, Maier RJ, Ji X, Wang B. Click, Release, and Fluoresce: A Chemical Strategy for a Cascade Prodrug System for Codelivery of Carbon Monoxide, a Drug Payload, and a Fluorescent Reporter. Org Lett 2018; 20:897-900. [PMID: 29380605 DOI: 10.1021/acs.orglett.7b03348] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chemical strategy was developed wherein a single trigger sets in motion a three-reaction cascade leading to the release of more than one drug-component in sequence with the generation of a fluorescent side product for easy monitoring. As a proof of concept, codelivery of CO with the antibiotic metronidazole was demonstrated.
Collapse
Affiliation(s)
- Ladie Kimberly C De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Stéphane L Benoit
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Robert J Maier
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303, United States
| |
Collapse
|
33
|
Zhang L, Rong Y, Zheng J, Yang C, Chen Y, Wang J, Wei G. Design, synthesis and biological evaluation of novel nitric oxide-donating podophyllotoxin derivatives as potential antiproliferative agents against multi-drug resistant leukemia cells. RSC Adv 2018; 8:34266-34274. [PMID: 35548612 PMCID: PMC9087117 DOI: 10.1039/c8ra06360e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Multidrug resistance remains a major obstacle for the effective treatment of carcinoma. To find new drugs for the chemotherapy of drug-resistant leukemia, in this study, two novel nitric oxide-donating podophyllotoxin derivatives were synthesized and preliminarily evaluated in vitro. Biological evaluation indicated that the more active molecule, S1, enhanced the intracellular NO level and significantly inhibited the proliferation of drug-resistant K562/VCR and K562/ADR cells with IC50 values of 0.008 ± 0.001 and 0.007 ± 0.001 μM, respectively, which were similar to that of sensitive K562 cells. Furthermore, it was observed that S1 blocked the G2 phase of the K562/ADR cell cycle by disruption of the microtubule organization and inhibition of CDK1 and CDK2 expression. Meanwhile, S1 induced apoptosis of K562/ADR cells via mitochondrial depolarization and activation of caspase-3. In addition, S1 suppressed the P-gp expression, induced autophagy by regulation of Beclin1 and LC3-II, and inhibited the mTOR and STAT3 signaling in K562/ADR cells. Overall, S1 may be a promising candidate against drug-resistant leukemia. Conjugate S1 exhibited potential antiproliferative activity against multi-drug resistant leukemia cells.![]()
Collapse
Affiliation(s)
- Lei Zhang
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
| | - Ying Rong
- Second Department of Pediatrics
- Affiliated Hospital of Zunyi Medical University
- Zunyi 563003
- PR China
| | - Jie Zheng
- Department of Nephrology & Rheumatology
- Affiliated Hospital of Zunyi Medical University
- Zunyi 563003
- PR China
| | - Chengli Yang
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
| | - Jing Wang
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563003
| | | |
Collapse
|
34
|
Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J Control Release 2018; 270:37-52. [DOI: 10.1016/j.jconrel.2017.11.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022]
|
35
|
Larin AA, Fershtat LL, Ananyev IV, Makhova NN. Versatile approach to heteroarylfuroxan derivatives from oximinofuroxans via a one-pot, nitration/thermolysis/[3+2]-cycloaddition cascade. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Poh WH, Barraud N, Guglielmo S, Lazzarato L, Rolando B, Fruttero R, Rice SA. Furoxan Nitric Oxide Donors Disperse Pseudomonas aeruginosa Biofilms, Accelerate Growth, and Repress Pyoverdine Production. ACS Chem Biol 2017. [PMID: 28628310 DOI: 10.1021/acschembio.7b00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of nitric oxide (NO) as a signal for biofilm dispersal has been shown to increase the susceptibility of many biofilms to antibiotics, promoting their eradication. The delivery of NO to biofilms can be achieved by using NO donors with different kinetics and properties of NO release that can influence their efficacy as biofilm control agents. In this study, the kinetics of three furoxan derivatives were evaluated. The effects of these NO donors, which have an advantageous pharmacological profile of slower onset with an extended duration of action, on Pseudomonas aeruginosa growth, biofilm development, and dispersal were also characterized. Compound LL4254, which showed a fast rate of NO release, induced biofilm dispersal at approximately 200 μM. While LL4212 and LL4216 have a slower rate of NO release, both compounds could induce biofilm dispersal, under the same treatment conditions, when used at higher concentrations. In addition, LL4212 and LL4216 were found to promote P. aeruginosa growth in iron-limited minimal medium, leading to a faster rate of biofilm formation and glucose utilization, and ultimately resulted in early dispersal of biofilm cells through carbon starvation. High concentrations of LL4216 also repressed production of the siderophore pyoverdine by more than 50-fold, via both NOx-dependent and NOx-independent mechanisms. The effects on growth and pyoverdine levels exerted by the furoxans appeared to be mediated by NO-independent mechanisms, suggesting functional activities of furoxans in addition to their release of NO and nitrite. Overall, this study reveals that secondary effects of furoxans are important considerations for their use as NO-releasing dispersal agents and that these compounds could be potentially redesigned as pyoverdine inhibitors.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Nicolas Barraud
- Genetics
of Biofilms Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Stefano Guglielmo
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Loretta Lazzarato
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Barbara Rolando
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Roberta Fruttero
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Scott A. Rice
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School
of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
37
|
Šírová M, Horková V, Etrych T, Chytil P, Říhová B, Studenovský M. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics. J Drug Target 2017; 25:796-808. [PMID: 28726521 DOI: 10.1080/1061186x.2017.1358724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with incorporated organic nitrates as nitric oxide (NO) donors were designed with the aim to localise NO generation in solid tumours, thus highly increasing the enhanced permeability and retention (EPR) effect. The NO donors were coupled to the polymer carrier either through a stable bond or through a hydrolytically degradable, pH sensitive, bond. In vivo, the co-administration of the polymer NO donor and HPMA copolymer-bound cytotoxic drug (doxorubicin; Dox) resulted in an improvement in the treatment of murine EL4 T-cell lymphoma. The polymer NO donors neither potentiated the in vitro toxicity of the cytotoxic drug nor exerted any effect on in vivo model without the EPR effect, such as BCL1 leukaemia. Thus, an increase in passive accumulation of the nanomedicine carrying cytotoxic drug via NO-enhanced EPR effect was the operative mechanism of action. The most significant improvement in the therapy was observed in a combination treatment with such a polymer conjugate of Dox, which is characterised by increased circulation in the blood and efficient accumulation in solid tumours. Notably, the combination treatment enabled the development of an anti-tumour immune response, which was previously demonstrated as an important feature of HPMA-based polymer cytotoxic drugs.
Collapse
Affiliation(s)
- Milada Šírová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Veronika Horková
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Tomáš Etrych
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Petr Chytil
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Blanka Říhová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Martin Studenovský
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| |
Collapse
|
38
|
Abstract
The increasing understanding of the role of nitric oxide (NO) in cancer biology has generated significant progress in the use of NO donor-based therapy to fight cancer. These advances strongly suggest the potential adoption of NO donor-based therapy in clinical practice, and this has been supported by several clinical studies in the past decade. In this review, we first highlight several types of important NO donors, including recently developed NO donors bearing a dinitroazetidine skeleton, represented by RRx-001, with potential utility in cancer therapy. Special emphasis is then given to the combination of NO donor(s) with other therapies to achieve synergy and to the hybridization of NO donor(s) with an anticancer drug/agent/fragment to enhance the activity or specificity or to reduce toxicity. In addition, we briefly describe inducible NO synthase gene therapy and nanotechnology, which have recently entered the field of NO donor therapy.
Collapse
Affiliation(s)
- Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Junjie Fu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| |
Collapse
|
39
|
Dash TK, Konkimalla VB. Formulation and Optimization of Doxorubicin and Biochanin A Combinational Liposomes for Reversal of Chemoresistance. AAPS PharmSciTech 2017; 18:1116-1124. [PMID: 27600324 DOI: 10.1208/s12249-016-0614-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023] Open
Abstract
Circumvention of drug resistance still remains a challenge in the development of anticancer therapeutics. Combinational nano-formulations provide many avenues for effective cancer therapy and reversal of drug resistance. In the current study, combination of biochanin A (BioA) and doxorubicin (DOX) in liposomes were prepared and studied for its potential to reverse DOX resistance in COLO205 cells. After development and validation of DOX resistant cells of COLO205 (ColoR), dosing ratio of DOX and BioA for reversal of DOX resistance was determined by co-treatment in ColoR cells. As limited solubility and analytical data available for BioA, therefore solubility was studied for BioA and analytical method was developed for the combination. Combinational liposomes were prepared and optimized for both lipid content and surface charge by evaluating size, polydispersity index, zeta potential, and encapsulation efficiency. The optimized formulation had a size about 125 nm; zeta potential of -19.5 mV and 70% encapsulation efficiency (EE) for BioA. Thus, prepared combinational liposomes of DOX and BioA were evaluated for its cellular uptake and efficacy to reverse DOX resistance. From the study, increased DOX uptake and promising effect for reversal of DOX resistance was observed.
Collapse
|
40
|
Fershtat LL, Makhova NN. Molecular Hybridization Tools in the Development of Furoxan-Based NO-Donor Prodrugs. ChemMedChem 2017; 12:622-638. [DOI: 10.1002/cmdc.201700113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| |
Collapse
|
41
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [PMID: 28117595 DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Chegaev K, Fraix A, Gazzano E, Abd-Ellatef GEF, Blangetti M, Rolando B, Conoci S, Riganti C, Fruttero R, Gasco A, Sortino S. Light-Regulated NO Release as a Novel Strategy To Overcome Doxorubicin Multidrug Resistance. ACS Med Chem Lett 2017; 8:361-365. [PMID: 28337331 DOI: 10.1021/acsmedchemlett.7b00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/30/2017] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) release from a suitable NO photodonor (NOP) can be fine-tuned by visible light stimuli at doses that are not toxic to cells but that inhibit several efflux pumps; these are mainly responsible for the multidrug resistance of the anticancer agent doxorubicin (DOX). The strategy may thus increase DOX toxicity against resistant cancer cells. Moreover, a novel molecular hybrid covalently joining DOX and NOP showed similar increased toxicity toward resistant cancer cells and, in addition, lower cardiotoxicity than DOX. This opens new and underexplored approaches to overcoming the main therapeutic drawbacks of this chemotherapeutic based on light-controlled release of NO.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Aurore Fraix
- Laboratory
of Photochemistry, Department of Drug Sciences, University of Catania, I-95125 Catania, Italy
| | - Elena Gazzano
- Department
of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | | | - Marco Blangetti
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Sabrina Conoci
- STMicroelectronics, Stradale Primosole 50, I-95121 Catania, Italy
| | - Chiara Riganti
- Department
of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy
| | - Roberta Fruttero
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Alberto Gasco
- Department
of Drug Science and Technology, University of Torino, I-10125 Torino, Italy
| | - Salvatore Sortino
- Laboratory
of Photochemistry, Department of Drug Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
43
|
Gu X, Huang Z, Ren Z, Tang X, Xue R, Luo X, Peng S, Peng H, Lu B, Tian J, Zhang Y. Potent Inhibition of Nitric Oxide-Releasing Bifendate Derivatives against Drug-Resistant K562/A02 Cells in Vitro and in Vivo. J Med Chem 2017; 60:928-940. [PMID: 28068095 DOI: 10.1021/acs.jmedchem.6b01075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidrug resistance is a major obstacle to successful chemotherapy for leukemia. In this study, a series of nitric oxide (NO)-releasing bifendate derivatives (7a-n) were synthesized. Biological evaluation indicated that the most active compound (7a) produced relatively high levels of NO and significantly inhibited the proliferation of drug-resistant K562/A02 cells in vitro and in vivo. In addition, 7a induced the mitochondrial tyrosine nitration and the intracellular accumulation of rhodamine 123 by inhibiting P-gp activity in K562/A02 cells. Furthermore, 7a remarkably down-regulated AKT, NF-κB, and ERK activation and HIF-1α expression in K562/A02 cells, which are associated with the tumor cell proliferation and drug resistance. Notably, the antitumor effects were dramatically attenuated by an NO scavenger or elimination of the NO-releasing capability of 7a, indicating that NO produced by 7a contributed to, at least partly, its cytotoxicity against drug-resistant K562/A02 cells. Overall, 7a may be a potential agent against drug-resistant myelogenous leukemia.
Collapse
Affiliation(s)
- Xiaoke Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou 221004, People's Republic of China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiguang Ren
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, People's Republic of China
| | - Xiaobo Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Rongfang Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xiaojun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, People's Republic of China
| | - Bin Lu
- Institute of Biophysics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical College , Wenzhou 325035, People's Republic of China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, California 90095, United States
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
44
|
Guglielmo S, Lazzarato L, Contino M, Perrone MG, Chegaev K, Carrieri A, Fruttero R, Colabufo NA, Gasco A. Structure-Activity Relationship Studies on Tetrahydroisoquinoline Derivatives: [4'-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)biphenyl-4-ol] (MC70) Conjugated through Flexible Alkyl Chains with Furazan Moieties Gives Rise to Potent and Selective Ligands of P-glycoprotein. J Med Chem 2016; 59:6729-38. [PMID: 27336199 DOI: 10.1021/acs.jmedchem.6b00252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
P-glycoprotein (P-gp) is a well-known membrane transporter expressed in a number of strategic biological barriers, where it exerts a protective effect of paramount importance. Conversely it is one of the main causes of multidrug resistance (MDR), being capable of effluxing many chemotherapeutics. In a development of previous research, a small library of compounds was created conjugating diversely substituted furazan rings with MC70, a well-known P-gp inhibitor. These compounds were assessed for their potency against P-gp and another transporter (MRP1), for their apparent permeability (Papp) and for their ability to induce ATPase activity, thus delineating a complete functional profile. They displayed a substrate mechanism of action and high selectivity toward P-gp, unlike the lead compound. Data relating to their activity range from low micromolar to sub-nanomolar EC50, the most interesting compounds being 15 (0.97 nM), 19 (1.3 nM), 25 (0.60 nM), and 27 (0.90 nM).
Collapse
Affiliation(s)
- Stefano Guglielmo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino Via P. Giuria 9, 10125 Torino, Italy
| | - Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino Via P. Giuria 9, 10125 Torino, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari "A. Moro" , Via Orabona 4, 70125 Bari, Italy
| | - Maria G Perrone
- Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari "A. Moro" , Via Orabona 4, 70125 Bari, Italy
| | - Konstantin Chegaev
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino Via P. Giuria 9, 10125 Torino, Italy
| | - Antonio Carrieri
- Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari "A. Moro" , Via Orabona 4, 70125 Bari, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino Via P. Giuria 9, 10125 Torino, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari "A. Moro" , Via Orabona 4, 70125 Bari, Italy.,Biofordrug s.r.l., Spin-off dell'Università degli Studi di Bari "A. Moro" Via Orabona 4, 70125 Bari, Italy
| | - Alberto Gasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino Via P. Giuria 9, 10125 Torino, Italy
| |
Collapse
|
45
|
Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A. H2S-Donating Doxorubicins May Overcome Cardiotoxicity and Multidrug Resistance. J Med Chem 2016; 59:4881-9. [PMID: 27120394 DOI: 10.1021/acs.jmedchem.6b00184] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOXO) is one of the most effective antineoplastic agents in clinical practice. Its use is limited by acute and chronic side effects, in particular by its cardiotoxicity and by the rapid development of resistance to it. As part of a program aimed at developing new DOXO derivatives endowed with reduced cardiotoxicity, and active against DOXO-resistant tumor cells, a series of H2S-releasing DOXOs (H2S-DOXOs) were obtained by combining DOXO with appropriate H2S donor substructures. The resulting compounds were studied on H9c2 cardiomyocytes and in DOXO-sensitive U-2OS osteosarcoma cells, as well as in related cell variants with increasing degrees of DOXO-resistance. Differently from DOXO, most of the products were not toxic at 5 μM concentration on H9c2 cells. A few of them triggered high activity on the cancer cells. H2S-DOXOs 10 and 11 emerged as the most interesting members of the series. The capacity of 10 to impair Pgp transporter is also discussed.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Daniela Cortese
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Elena Gazzano
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Ilaria Buondonno
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Loretta Lazzarato
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Marilù Fanelli
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Claudia M Hattinger
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Massimo Serra
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Chiara Riganti
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Roberta Fruttero
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Dario Ghigo
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Alberto Gasco
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
46
|
Hasegawa U, Wang T, Chen JJY, Uyama H, van der Vlies AJ. Furoxan-Bearing Micelles for Nitric Oxide Delivery. Macromol Biosci 2016; 16:1009-18. [DOI: 10.1002/mabi.201500401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/26/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Urara Hasegawa
- Frontier Research Base for Young Researchers and Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Tengjiao Wang
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Jerry J. Y. Chen
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - André J. van der Vlies
- Frontier Research Center and Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
47
|
Overcoming multidrug resistance by targeting mitochondria with NO-donating doxorubicins. Bioorg Med Chem 2016; 24:967-75. [PMID: 26822567 DOI: 10.1016/j.bmc.2016.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 12/17/2022]
Abstract
A library of nitric oxide-donor doxorubicins (NO-DOXOs) was synthesized by linking appropriate NO-donor moieties at C-14 position through an ester bridge. Their hydrolytic stability was evaluated. The intracellular accumulation and cytotoxicity of these novel NO-DOXOs were studied in DOXO-sensitive (HT29) and DOXO-resistant (HT29/dx) tumor-cells. Hydrolytically-stable compounds accumulated in HT29 and HT29/dx cells, thanks to the nitration of plasma-membrane efflux transporters. Surprisingly, no close correlation was found between intracellular accumulation and cytotoxicity. Only compounds with high mitochondria retention (due to nitration of mitochondrial efflux transporter) exert high cytotoxicity, through the activation of a mitochondrial-dependent apoptosis.
Collapse
|
48
|
Huang Y, Liu M, Meng L, Feng P, Guo Y, Ying M, Zhu X, Chen Y. Synthesis and antitumor evaluation of novel hybrids of phenylsulfonylfuroxan and epiandrosterone/dehydroepiandrosterone derivatives. Steroids 2015; 101:7-14. [PMID: 26004429 DOI: 10.1016/j.steroids.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/24/2015] [Accepted: 05/13/2015] [Indexed: 11/27/2022]
Abstract
Thirteen novel furoxan-based nitric oxide (NO) releasing hybrids (14a-e, 15a-e, 17b-d) of 16,17-pyrazo-annulated steroidal derivatives were synthesized and evaluated against the MDA-MB-231, HCC1806, SKOV-3, DU145, and HUVEC cell lines for their in vitro anti-proliferative activity. Most of the compounds displayed potent anti-proliferative effects. Among them, 17c exhibited the best activity with IC50 values of 20-1.4nM against four cell lines (MDA-MB-231, SKOV-3, DU145, and HUVEC), and 1.03μM against a tamoxifen resistant breast cancer cell line (HCC1806). Furthermore, five compounds (14a, 15a, 17b-d) were selected to screen for VEGF inhibitory activity. Compounds 15a, 17b,c showed obviously better activity than 2-Methoxyestradiol (2-ME) on reducing levels of VEGF secreted by MDA-MB-231 cell line. In a Capillary-like Tube Formation Assay, compounds 17b,c exhibited a significant suppression of the tubule formation in the concentration of 1.75nM and 58nM, respectively. The preliminary SAR showed that steroidal scaffolds with a linker in 3-position were favorable moieties to evidently increase the bioactivities of these hybrids. Overall, these results implied that 17c merited to be further investigated as a promising anti-cancer candidate.
Collapse
Affiliation(s)
- Yaoqing Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Mingming Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Lanfang Meng
- Department of Nuclear Medicine, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Pan Feng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yalan Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Minghua Ying
- Zhejiang Xianju Pharmaceutical Co. Ltd., Zhejiang, China
| | - Xiuyan Zhu
- Zhejiang Xianju Pharmaceutical Co. Ltd., Zhejiang, China
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Chegaev K, Federico A, Marini E, Rolando B, Fruttero R, Morbin M, Rossi G, Fugnanesi V, Bastone A, Salmona M, Badiola NB, Gasparini L, Cocco S, Ripoli C, Grassi C, Gasco A. NO-donor thiacarbocyanines as multifunctional agents for Alzheimer's disease. Bioorg Med Chem 2015; 23:4688-4698. [PMID: 26078011 DOI: 10.1016/j.bmc.2015.05.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
Some symmetrical and unsymmetrical thiacarbocyanines bearing NO-donor nitrooxy and furoxan moieties were synthesized and studied as candidate anti-Alzheimer's drugs. All products activated soluble guanylate cyclase (sGC) in a dose-dependent manner, depending on the presence in their structures of NO-donor groups. None displayed toxicity when tested at concentrations below 10 μM on human brain microvascular endothelial cells (hCMEC/D3). Some products were capable of inhibiting amyloid β-protein (Aβ) aggregation, with a potency in the low μM concentration range, and of inhibiting aggregation of human recombinant tau protein in amyloid fibrils when incubated with the protein at 1 μM concentration. Nitrooxy derivative 21 and furoxan derivative 22 were selected to investigate synaptic plasticity. Both products, tested at 2 μM concentration, counteracted the inhibition of long-term potentiation (LTP) induced by Aβ42 in hippocampal brain slices.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Antonella Federico
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Elisabetta Marini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy.
| | - Michela Morbin
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valeria Fugnanesi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Antonio Bastone
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, Italy
| | - Nahuai B Badiola
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Sara Cocco
- Institute of Human Physiology, UniversitàCattolica, Roma, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, UniversitàCattolica, Roma, Italy
| | - Claudio Grassi
- Institute of Human Physiology, UniversitàCattolica, Roma, Italy
| | - Alberto Gasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
50
|
Ai Y, Kang F, Huang Z, Xue X, Lai Y, Peng S, Tian J, Zhang Y. Synthesis of CDDO-amino acid-nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. J Med Chem 2015; 58:2452-64. [PMID: 25675144 DOI: 10.1021/jm5019302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seventeen CDDO-amino acid-NO donor trihybrids (4a-q) were designed and synthesized. Biological evaluation indicated that the most active compound 4c produced high levels of NO and inhibited the proliferation of drug-sensitive (HCT-8, IC50 = 0.294 μM) and drug-resistant (HCT-8/5-FU, IC50 = 0.232 μM) colon cancer cells, which were attenuated by an NO scavenger or typical substrate of PepT1. Furthermore, 4c triggered HCT-8 and HCT-8/5-FU cell apoptosis more strongly than CDDO-Me, inhibited the HIF-1α, Stat3, AKT, and ERK signaling, and induced the nitration of P-gp, MRP1, and BCRP proteins in HCT-8/5-FU cells. Finally, 4c had 4.36-5.53-fold less inhibitory activity against nontumor colon epithelial-like cells (CCD841, IC50 = 1.282 μM) in vitro and inhibited the growth of implanted human drug-resistant colon cancers in mice more potently than CDDO-Me. Together, 4c is a novel trihybrid with potent antitumor activity and may be a promising candidate for the treatment of drug-resistant colon cancer.
Collapse
Affiliation(s)
- Yong Ai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|