1
|
Shin J, Porubsky V, Carothers J, Sauro HM. Standards, dissemination, and best practices in systems biology. Curr Opin Biotechnol 2023; 81:102922. [PMID: 37004298 PMCID: PMC10435326 DOI: 10.1016/j.copbio.2023.102922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
The reproducibility of scientific research is crucial to the success of the scientific method. Here, we review the current best practices when publishing mechanistic models in systems biology. We recommend, where possible, to use software engineering strategies such as testing, verification, validation, documentation, versioning, iterative development, and continuous integration. In addition, adhering to the Findable, Accessible, Interoperable, and Reusable modeling principles allows other scientists to collaborate and build off of each other's work. Existing standards such as Systems Biology Markup Language, CellML, or Simulation Experiment Description Markup Language can greatly improve the likelihood that a published model is reproducible, especially if such models are deposited in well-established model repositories. Where models are published in executable programming languages, the source code and their data should be published as open-source in public code repositories together with any documentation and testing code. For complex models, we recommend container-based solutions where any software dependencies and the run-time context can be easily replicated.
Collapse
Affiliation(s)
- Janis Shin
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Veronica Porubsky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - James Carothers
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Lautz L, Oldenkamp R, Dorne J, Ragas A. Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol In Vitro 2019; 60:61-70. [DOI: 10.1016/j.tiv.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
4
|
Bojarska J, Fruziński A, Sieroń L, Maniukiewicz W. The first insight into the supramolecular structures of popular drug repaglinide: Focus on intermolecular interactions in antidiabetic agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Tang H, Mayersohn M. Porcine Prediction of Pharmacokinetic Parameters in People: A Pig in a Poke? Drug Metab Dispos 2018; 46:1712-1724. [PMID: 30171162 DOI: 10.1124/dmd.118.083311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
The minipig has become an animal of considerable interest in preclinical drug development. It has been used in toxicology research and in examining/establishing regulatory guidelines as a nonrodent animal model. We have reviewed some basic issues that one would want to consider in the development and testing of any animal model for humans. The pig is a reasonable alternative to the dog, but there are some clear limitations and unexplained disparities in the literature, which require further study; primary among these is the need for standardization in choice of breed and sex and routine protocols. The minipig offers numerous advantages over other established animal models, and it has similarities to the human with regard to anatomy, physiology, and biochemistry. The gastrointestinal tract is structurally and functionally similar to humans. This appears to be true for enzymes and transporters in the gut as well, but more study is needed. One major concern is assessment of oral drug absorption, especially with regard to potential food effects due to gastric emptying differences, yet this does not appear to be a consistent observation. Hepatic metabolism seems to reflect enzymatic patterns in humans, with some differences. Kidney function seems similar to humans but requires further study. We have analyzed literature data that suggest the pig would offer a reasonable model for human oral bioavailability and for allometric predictions of clearance. The minipig appears to be the model for dermal absorption in humans, and we discuss this in terms of literature data and our own in-house experience.
Collapse
Affiliation(s)
- Huadong Tang
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| | - Michael Mayersohn
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| |
Collapse
|
6
|
Henze LJ, Koehl NJ, O'Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. ACTA ACUST UNITED AC 2018; 71:581-602. [PMID: 29635685 DOI: 10.1111/jphp.12912] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In pharmaceutical drug development, preclinical tests in animal models are essential to demonstrate whether the new drug is orally bioavailable and to gain a first insight into in vivo pharmacokinetic parameters that can subsequently be used to predict human values. Despite significant advances in the development of bio-predictive in vitro models and increasing ethical expectations for reducing the number of animals used for research purposes, there is still a need for appropriately selected pre-clinical in vivo testing to provide guidance on the decision to progress to testing in humans. The selection of the appropriate animal models is essential both to maximise the learning that can be obtained from such experiments and to avoid unnecessary testing in a range of species. KEY FINDINGS The present review, provides an insight into the suitability of the pig model for predicting oral bioavailability in humans, by comparing the conditions in the GIT. It also contains a comparison between the bioavailability of compounds dosed to both humans and pigs, to provide an insight into the relative correlation and examples on why a lack of correlation may be observed. SUMMARY While there is a general trend towards predicting human bioavailability from pig data, there is considerable variability in the data set, most likely reflecting species specific differences in individual drug metabolism. Nonetheless, the correlation between pigs vs. humans was comparable to that reported for dogs vs. humans. The presented data demonstrate the suitability of the pig as a preclinical model to predict bioavailability in human.
Collapse
Affiliation(s)
- Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Edmund S Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | | |
Collapse
|
7
|
|
8
|
Dubbelboer IR, Lilienberg E, Sjögren E, Lennernäs H. A Model-Based Approach To Assessing the Importance of Intracellular Binding Sites in Doxorubicin Disposition. Mol Pharm 2017; 14:686-698. [PMID: 28182434 DOI: 10.1021/acs.molpharmaceut.6b00974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Doxorubicin is an anticancer agent, which binds reversibly to topoisomerase I and II, intercalates to DNA base pairs, and generates free radicals. Doxorubicin has a high tissue:plasma partition coefficient and high intracellular binding to the nucleus and other subcellular compartments. The metabolite doxorubicinol has an extensive tissue distribution. This porcine study investigated whether the traditional implementation of tissue binding, described by the tissue:plasma partition coefficient (Kp,t), could be used to appropriately analyze and/or simulate tissue doxorubicin and doxorubicinol concentrations in healthy pigs, when applying a physiologically based pharmacokinetic (PBPK) model approach, or whether intracellular binding is required in the semi-PBPK model. Two semi-PBPK models were developed and evaluated using doxorubicin and doxorubicinol concentrations in healthy pig blood, bile, and urine and kidney and liver tissues. In the generic semi-PBPK model, tissue binding was described using the conventional Kp,t approach. In the binding-specific semi-PBPK model, tissue binding was described using intracellular binding sites. The best semi-PBPK model was validated against a second data set of healthy pig blood and bile concentrations. Both models could be used for analysis and simulations of biliary and urinary excretion of doxorubicin and doxorubicinol and plasma doxorubicinol concentrations in pigs, but the binding-specific model was better at describing plasma doxorubicin concentrations. Porcine tissue concentrations were 400- to 1250-fold better captured by the binding-specific model. This model adequately predicted plasma doxorubicin concentration-time and biliary doxorubicin excretion profiles against the validation data set. The semi-PBPK models applied were similarly effective for analysis of plasma concentrations and biliary and urinary excretion of doxorubicin and doxorubicinol in healthy pigs. Inclusion of intracellular binding in the doxorubicin semi-PBPK models was important to accurately describe tissue concentrations during in vivo conditions.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| |
Collapse
|
9
|
Schaefer N, Helfer AG, Kettner M, Laschke MW, Schlote J, Ewald AH, Meyer MR, Menger MD, Maurer HH, Schmidt PH. Metabolic patterns of JWH-210, RCS-4, and THC in pig urine elucidated using LC-HR-MS/MS: Do they reflect patterns in humans? Drug Test Anal 2016; 9:613-625. [DOI: 10.1002/dta.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nadine Schaefer
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Andreas G. Helfer
- Department of Experimental and Clinical Toxicology; Saarland University; Building 46 D-66421 Homburg (Saar) Germany
| | - Mattias Kettner
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery; Saarland University; Building 65/66 D-66421 Homburg (Saar) Germany
| | - Julia Schlote
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Andreas H. Ewald
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology; Saarland University; Building 46 D-66421 Homburg (Saar) Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology; Heidelberg University Hospital; Im Neuenheimer Feld 410 D-69120 Heidelberg Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery; Saarland University; Building 65/66 D-66421 Homburg (Saar) Germany
| | - Hans H. Maurer
- Department of Experimental and Clinical Toxicology; Saarland University; Building 46 D-66421 Homburg (Saar) Germany
| | - Peter H. Schmidt
- Institute of Legal Medicine; Saarland University; Building 80.2 D-66421 Homburg (Saar) Germany
| |
Collapse
|
10
|
Schaefer N, Wojtyniak JG, Kettner M, Schlote J, Laschke MW, Ewald AH, Lehr T, Menger MD, Maurer HH, Schmidt PH. Pharmacokinetics of (synthetic) cannabinoids in pigs and their relevance for clinical and forensic toxicology. Toxicol Lett 2016; 253:7-16. [DOI: 10.1016/j.toxlet.2016.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
|
11
|
Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 2016; 48:281-327. [PMID: 26987379 DOI: 10.3109/03602532.2016.1157600] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enterohepatic recirculation (EHC) concerns many physiological processes and notably affects pharmacokinetic parameters such as plasma half-life and AUC as well as estimates of bioavailability of drugs. Also, EHC plays a detrimental role as the compounds/drugs are allowed to recycle. An in-depth comprehension of this phenomenon and its consequences on the pharmacological effects of affected drugs is important and decisive in the design and development of new candidate drugs. EHC of a compound/drug occurs by biliary excretion and intestinal reabsorption, sometimes with hepatic conjugation and intestinal deconjugation. EHC leads to prolonged elimination half-life of the drugs, altered pharmacokinetics and pharmacodynamics. Study of the EHC of any drug is complicated due to unavailability of the apposite model, sophisticated procedures and ethical concerns. Different in vitro and in vivo methods for studies in experimental animals and humans have been devised, each having its own merits and demerits. Involvement of the different transporters in biliary excretion, intra- and inter-species, pathological and biochemical variabilities obscure the study of the phenomenon. Modeling of drugs undergoing EHC has always been intricate and exigent models have been exploited to interpret the pharmacokinetic profiles of drugs witnessing multiple peaks due to EHC. Here, we critically appraise the mechanisms of bile formation, factors affecting biliary drug elimination, methods to estimate biliary excretion of drugs, EHC, multiple peak phenomenon and its modeling.
Collapse
Affiliation(s)
- Mohd Yaseen Malik
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Raebareli , India ;,b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Swati Jaiswal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Abhisheak Sharma
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India ;,d Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , USA
| | - Mahendra Shukla
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Jawahar Lal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
12
|
Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2014; 74:80-92. [PMID: 25545337 DOI: 10.1016/j.vascn.2014.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. METHODS Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. RESULTS Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. DISCUSSION In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques.
Collapse
|
13
|
Sjögren E, Hedeland M, Bondesson U, Lennernäs H. Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs. Eur J Pharm Sci 2014; 57:214-23. [PMID: 24075962 DOI: 10.1016/j.ejps.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics (PK) of fexofenadine (FEX) in pigs were investigated with the focus on exploring the interplay between hepatic transport and metabolism when administered intravenously (iv) alone or with verapamil. The in vivo pig model enabled simultaneous sampling from plasma (pre-liver, post-liver and peripheral), bile and urine. Each animal was administered FEX 35mg iv alone or with verapamil 35mg. Plasma, bile and urine were analyzed with liquid chromatography-tandem mass spectrometry. Non-compartmental analysis (NCA) was used to estimate traditional PK parameters. In addition, a physiologically based pharmacokinetic (PBPK) model consisting of 11 compartments (6 tissues +5 sample sites) was applied for mechanistic elucidation and estimation of individual PK parameters. FEX had a terminal half-life of 1.7h and a liver extraction of 3%. The fraction of the administered dose of unchanged FEX excreted into the bile was 25% and the bile exposure was more than 100 times higher than the portal vein total plasma exposure, indicating carrier-mediated (CM) disposition processes in the liver. 23% of the administered dose of FEX was excreted unchanged in the urine. An increase in FEX plasma exposure (+50%) and a decrease in renal clearance (-61%) were detected by NCA as a direct effect of concomitant administration of verapamil. However, analysis of the PBPK model also revealed that biliary clearance was significantly inhibited (-53%) by verapamil. In addition, PBPK analysis established that metabolism and CM uptake were important factors in the disposition of FEX in the liver. In conclusion, this study demonstrated that CM transport of FEX in both liver and kidneys was inhibited by a single dose of verapamil.
Collapse
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Biopharmaceutic Research Group, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden.
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 573, SE-751 23 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Ulf Bondesson
- Department of Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Box 573, SE-751 23 Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Biopharmaceutic Research Group, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
14
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
15
|
Suenderhauf C, Tuffin G, Lorentsen H, Grimm HP, Flament C, Parrott N. Pharmacokinetics of Paracetamol in Göttingen Minipigs: In Vivo Studies and Modeling to Elucidate Physiological Determinants of Absorption. Pharm Res 2014; 31:2696-707. [DOI: 10.1007/s11095-014-1367-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/21/2014] [Indexed: 12/11/2022]
|
16
|
Dubbelboer IR, Lilienberg E, Hedeland M, Bondesson U, Piquette-Miller M, Sjögren E, Lennernäs H. The effects of lipiodol and cyclosporin A on the hepatobiliary disposition of doxorubicin in pigs. Mol Pharm 2014; 11:1301-13. [PMID: 24558959 DOI: 10.1021/mp4007612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) emulsified in Lipiodol (LIP) is used as local palliative treatment for unresectable intermediate stage hepatocellular carcinoma. The objective of this study was to examine the poorly understood effects of the main excipient in the drug delivery system, LIP, alone or together with cyclosporin A (CsA), on the in vivo liver disposition of DOX and its active metabolite doxorubicinol (DOXol). The advanced, multi-sampling-site, acute pig model was used; samples were collected from three blood vessels (v. portae, v. hepatica and v. femoralis), bile and urine. The four treatment groups (TI-TIV) all received two intravenous 5 min infusions of DOX into an ear vein: at 0 and 200 min. Before the second dose, the pigs received a portal vein infusion of saline (TI), LIP (TII), CsA (TIII) or LIP and CsA (TIV). Concentrations of DOX and DOXol were analyzed using UPLC-MS/MS. The developed multicompartment model described the distribution of DOX and DOXol in plasma, bile and urine. LIP did not affect the pharmacokinetics of DOX or DOXol. CsA (TIII and TIV) had no effect on the plasma pharmacokinetics of DOX, but a 2-fold increase in exposure to DOXol and a significant decrease in hepatobiliary clearance of DOX and DOXol were observed. Model simulations supported that CsA inhibits 99% of canalicular biliary secretion of both DOX and DOXol, but does not affect the metabolism of DOX to DOXol. In conclusion, LIP did not directly interact with transporters, enzymes and/or biological membranes important for the hepatobiliary disposition of DOX.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Lundahl A, Tevell Åberg A, Bondesson U, Lennernäs H, Hedeland M. High-resolution mass spectrometric investigation of the phase I and II metabolites of finasteride in pig plasma, urine and bile. Xenobiotica 2013; 44:498-510. [DOI: 10.3109/00498254.2013.866298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Griffin BT, Kuentz M, Vertzoni M, Kostewicz ES, Fei Y, Faisal W, Stillhart C, O'Driscoll CM, Reppas C, Dressman JB. Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: case studies with fenofibrate. Eur J Pharm Biopharm 2013; 86:427-37. [PMID: 24184675 DOI: 10.1016/j.ejpb.2013.10.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
The objectives of this study were to characterise three prototype fenofibrate lipid-based formulations using a range of in vitro tests with differing levels of complexity and to assess the extent to which these methods provide additional insight into in vivo findings. Three self-emulsifying drug delivery systems (SEDDS) were prepared: a long chain (LC) Type IIIA SEDDS, a medium chain (MC) Type IIIA SEDDS, and a Type IIIB/IV SEDDS containing surfactants only (SO). Dilution, dispersion and digestion tests were performed to assess solubilisation and precipitation behaviour in vitro. Focussed beam reflectance measurements and solid state characterisation of the precipitate was conducted. Oral bioavailability was evaluated in landrace pigs. Dilution and dispersion testing revealed that all three formulations were similar in terms of maintaining fenofibrate in a solubilised state on dispersion in biorelevant media. During in vitro digestion, the Type IIIA formulations displayed limited drug precipitation (<5%), whereas the Type IIIB/IV formulation displayed extensive drug precipitation (~70% dose). Solid state analysis confirmed that precipitated fenofibrate was crystalline. The oral bioavailability was similar for the three lipid formulations (65-72%). In summary, the use of LC versus MC triglycerides in Type IIIA SEDDS had no impact on the bioavailability of fenofibrate. The extensive precipitation observed with the Type IIIB/IV formulation during in vitro digestion did not adversely impact fenofibrate bioavailability in vivo, relative to the Type IIIA formulations. These results were predicted suitably using in vitro dilution and dispersion testing, whereas the in vitro digestion method failed to predict the outcome of the in vivo study.
Collapse
Affiliation(s)
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | - Maria Vertzoni
- Faculty of Pharmacy, National & Kapodistrian University of Athens, Greece
| | - Edmund S Kostewicz
- Institut für Pharmazeutische Technologie, Goethe Universität, Frankfurt am Main, Germany
| | - Yang Fei
- Institut für Pharmazeutische Technologie, Goethe Universität, Frankfurt am Main, Germany
| | - Waleed Faisal
- School of Pharmacy, University College Cork, Ireland
| | - Cordula Stillhart
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | | | - Christos Reppas
- Faculty of Pharmacy, National & Kapodistrian University of Athens, Greece
| | - Jennifer B Dressman
- Institut für Pharmazeutische Technologie, Goethe Universität, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Poulin P. Prediction of Total Hepatic Clearance by Combining Metabolism, Transport, and Permeability Data in the In Vitro–In Vivo Extrapolation Methods: Emphasis on an Apparent Fraction Unbound in Liver for Drugs. J Pharm Sci 2013; 102:2085-95. [DOI: 10.1002/jps.23562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
|
20
|
Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 2012. [PMID: 23179857 DOI: 10.1007/s10928-012-9280-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue (usually total body weight) volumes, fractions (f ( d )) of cardiac output with Fick's Law of Perfusion, tissue/blood partitioning (K ( p )), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mammillary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated K ( p ) values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common K ( p ) and f ( d ) values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models.
Collapse
Affiliation(s)
- Yanguang Cao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 404 Kapoor Hall, Buffalo, NY 14214-8033, USA
| | | |
Collapse
|
21
|
A Physiologically Based Pharmacokinetic Model of the Minipig: Data Compilation and Model Implementation. Pharm Res 2012. [DOI: 10.1007/s11095-012-0911-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Kulkarni R, Yumibe N, Wang Z, Zhang X, Tang CC, Ruterbories K, Cox A, McCain R, Knipp GT. Comparative Pharmacokinetics Studies of Immediate- and Modified-Release Formulations of Glipizide in Pigs and Dogs. J Pharm Sci 2012; 101:4327-36. [DOI: 10.1002/jps.23292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 11/09/2022]
|
23
|
Thörn HA, Sjögren E, Dickinson PA, Lennernäs H. Binding Processes Determine the Stereoselective Intestinal and Hepatic Extraction of Verapamil in Vivo. Mol Pharm 2012; 9:3034-45. [DOI: 10.1021/mp3000875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helena Anna Thörn
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
| | - Paul Alfred Dickinson
- Clinical Pharmacology and Pharmacometrics, AstraZeneca R&D, Alderley Park, Macclesfield, United Kingdom
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
| |
Collapse
|