1
|
Li YC, Lin BH, Murakami M, Wu YS, Hung TH, Chen CC, Ambudkar SV, Wu CP. Vodobatinib overcomes cancer multidrug resistance by attenuating the drug efflux function of ABCB1 and ABCG2. Eur J Pharmacol 2025; 988:177231. [PMID: 39725134 DOI: 10.1016/j.ejphar.2024.177231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Multidrug resistance (MDR) remains a significant obstacle in cancer treatment, primarily attributable to the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2 within cancer cells. These transporters actively diminish the effectiveness of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux, thereby reducing intracellular drug accumulation. Given the absence of approved treatments for multidrug-resistant cancers and the established benefits of combining tyrosine kinase inhibitors (TKIs) with conventional anticancer drugs, we investigate the potential of vodobatinib, a potent c-Abl TKI presently in clinical trials, to restore sensitivity to chemotherapeutic agents in multidrug-resistant cancer cells overexpressing ABCB1 and ABCG2. Results indicate that vodobatinib, administered at sub-toxic concentrations, effectively restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. Moreover, vodobatinib enhances drug-induced apoptosis in these cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, while maintaining their expression levels. Moreover, we found that while vodobatinib enhances the ATPase activity of ABCB1 and ABCG2, the overexpression of these transporters does not induce resistance to vodobatinib. These results strongly suggest that increased levels of ABCB1 or ABCG2 are unlikely to play a significant role in the development of resistance to vodobatinib in cancer patients. Overall, our findings unveil an additional pharmacological facet of vodobatinib against ABCB1 and ABCG2 activity, suggesting its potential incorporation into combination therapy for a specific subset of patients with tumors characterized by high ABCB1 or ABCG2 levels. Further investigation is warranted to fully elucidate the clinical implications of this therapeutic approach.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
2
|
Li YC, Lee YC, Murakami M, Huang YH, Hung TH, Wu YS, Ambudkar SV, Wu CP. The colony-stimulating factor-1 receptor inhibitor edicotinib counteracts multidrug resistance in cancer cells by inhibiting ABCG2-mediated drug efflux. Biomed Pharmacother 2024; 180:117554. [PMID: 39405897 DOI: 10.1016/j.biopha.2024.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Chemotherapy treatment faces a major obstacle with the emergence of multidrug resistance (MDR), often attributed to the elevated expression of ATP-binding cassette (ABC) transporters such as ABCG2 and ABCB1 in cancer cells. These transporters hinder the efficacy of cytotoxic drugs via ATP hydrolysis-dependent efflux, leading to diminished intracellular drug levels. The scarcity of approved treatments for multidrug resistant cancers necessitates exploration of alternative strategies, including drug repositioning of molecular targeted agents to counteract ABCG2-mediated MDR in multidrug-resistant cancer cells. This study investigates the potential of edicotinib, a selective colony-stimulating factor-1 receptor (CSF-1R) tyrosine kinase inhibitor that is currently undergoing clinical trials for various diseases, to reverse MDR in ABCG2-overexpressing cancer cells. Our findings reveal that by attenuating the drug-efflux function of ABCG2 without altering its expression, edicotinib improves drug-induced apoptosis and reverses MDR in ABCG2-overexpressing multidrug-resistant cancer cells at non-toxic concentrations. Through ATPase activity analysis and molecular docking, potential interaction sites for edicotinib on ABCG2 were identified. These results underscore an additional pharmacological benefit of edicotinib against ABCG2 activity, suggesting its potential incorporation into combination therapies for patients with ABCG2-overexpressing tumors. Further research is warranted to validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Chieh Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
3
|
Lin BH, Li YC, Murakami M, Wu YS, Huang YH, Hung TH, Ambudkar SV, Wu CP. Epertinib counteracts multidrug resistance in cancer cells by antagonizing the drug efflux function of ABCB1 and ABCG2. Biomed Pharmacother 2024; 180:117542. [PMID: 39388999 DOI: 10.1016/j.biopha.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
A significant hurdle in cancer treatment arises from multidrug resistance (MDR), often due to overexpression of ATP-binding cassette (ABC) transporters like ABCB1 and/or ABCG2 in cancer cells. These transporters actively diminish the efficacy of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux and reducing intracellular drug accumulation in cancer cells. Addressing multidrug-resistant cancers poses a significant challenge due to the lack of approved treatments, prompting the exploration of alternative avenues like drug repurposing (also referred to as drug repositioning) of molecularly targeted agents to reverse MDR-mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. Epertinib, a potent inhibitor of EGFR and HER2 currently in clinical trials for solid tumors, was investigated for its potential to resensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our findings reveal that at sub-toxic, submicromolar concentrations, epertinib restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. The results demonstrate that epertinib enhances drug-induced apoptosis in these cancer cells by impeding the drug-efflux function of ABCB1 and ABCG2 without altering their expression. ATPase activity and molecular docking were employed to reveal potential interaction sites between epertinib and the drug-binding pockets of ABCB1 and ABCG2. In summary, our study demonstrates an additional pharmacological capability of epertinib against the activity of ABCB1 and ABCG2. These findings suggest that incorporating epertinib into combination therapy could be advantageous for a specific patient subset with tumors exhibiting high levels of ABCB1 or ABCG2, warranting further exploration.
Collapse
Affiliation(s)
- Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
4
|
Liu C, Li J, Xu F, Chen L, Ni M, Wu J, Zhao H, Wu Y, Li J, Wu X, Chen X. PARP1-DOT1L transcription axis drives acquired resistance to PARP inhibitor in ovarian cancer. Mol Cancer 2024; 23:111. [PMID: 38778348 PMCID: PMC11110363 DOI: 10.1186/s12943-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.
Collapse
Affiliation(s)
- Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangchun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Wu CP, Hsieh YJ, Tseng HY, Huang YH, Li YQ, Hung TH, Wang SP, Wu YS. The WD repeat-containing protein 5 (WDR5) antagonist WDR5-0103 restores the efficacy of cytotoxic drugs in multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2. Biomed Pharmacother 2022; 154:113663. [PMID: 36081287 DOI: 10.1016/j.biopha.2022.113663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022] Open
Abstract
The development of multidrug resistance (MDR) is one of the major challenges in the treatment of cancer which is caused by the overexpression of the ATP-binding cassette (ABC) transporters ABCB1 (P-glycoprotein) and/or ABCG2 (BCRP/MXR/ABCP) in cancer cells. These transporters are capable of reducing the efficacy of cytotoxic drugs by actively effluxing them out of cancer cells. Since there is currently no approved treatment for patients with multidrug-resistant tumors, the drug repurposing approach provides an alternative route to identify agents to reverse MDR mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. WDR5-0103 is a histone H3 lysine 4 (H3K4) methyltransferase inhibitor that disrupts the interaction between the WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia (MLL) protein. In this study, the effect of WDR5-0103 on MDR mediated by ABCB1 and ABCG2 was determined. We found that in a concentration-dependent manner, WDR5-0103 could sensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to conventional cytotoxic drugs. Our results showed that WDR5-0103 reverses MDR and improves drug-induced apoptosis in multidrug-resistant cancer cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, without altering the protein expression of ABCB1 or ABCG2. The potential sites of interactions of WDR5-0103 with the drug-binding pockets of ABCB1 and ABCG2 were predicted by molecular docking. In conclusion, the MDR reversal activity of WDR5-0103 demonstrated here indicates that it could be used in combination therapy to provide benefits to a subset of patients with tumor expressing high levels of ABCB1 or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Ya-Ju Hsieh
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Han-Yu Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
6
|
P-glycoprotein Mediates Resistance to the Anaplastic Lymphoma Kinase Inhiitor Ensartinib in Cancer Cells. Cancers (Basel) 2022; 14:cancers14092341. [PMID: 35565470 PMCID: PMC9104801 DOI: 10.3390/cancers14092341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ensartinib (X-396) is a promising second-generation small-molecule inhibitor of anaplastic lymphoma kinase (ALK) that was developed for the treatment of ALK-positive non-small-cell lung cancer. Preclinical and clinical trial results for ensartinib showed superior efficacy and a favorable safety profile compared to the first-generation ALK inhibitors that have been approved by the U.S. Food and Drug Administration. Although the potential mechanisms of acquired resistance to ensartinib have not been reported, the inevitable emergence of resistance to ensartinib may limit its therapeutic application in cancer. In this work, we investigated the interaction of ensartinib with P-glycoprotein (P-gp) and ABCG2, two ATP-binding cassette (ABC) multidrug efflux transporters that are commonly associated with the development of multidrug resistance in cancer cells. Our results revealed that P-gp overexpression, but not expression of ABCG2, was associated with reduced cancer cell susceptibility to ensartinib. P-gp directly decreased the intracellular accumulation of ensartinib, and consequently reduced apoptosis and cytotoxicity induced by this drug. The cytotoxicity of ensartinib could be significantly reversed by treatment with the P-gp inhibitor tariquidar. In conclusion, we report that ensartinib is a substrate of P-gp, and provide evidence that this transporter plays a role in the development of ensartinib resistance. Further investigation is needed.
Collapse
|
7
|
You K, Liu Y, Chen L, Ye H, Lin W. Radix ranunculus temate saponins sensitizes ovarian cancer to Taxol via upregulation of miR‑let‑7b. Exp Ther Med 2022; 23:315. [PMID: 35371298 PMCID: PMC8943803 DOI: 10.3892/etm.2022.11244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
A common cause of treatment failure in ovarian cancer is acquired drug resistance. Therefore, effective novel drugs against chemoresistance need to be developed. MicroRNAs (miRNAs or miRs) serve key regulatory roles in tumorigenesis and chemoresistance. The objective of the present study was to explore the role of miR-let-7b in ovarian cancer chemoresistance, and to develop novel strategy for the treatment of drug-resistant ovarian cancer. For this purpose, reverse transcription-quantitative PCR was performed to evaluate the expression level of miR-let-7b in fresh ovarian cancer tissues and cell lines. miR-let-7b mimic was transfected into ovarian cancer cell lines. Functional experiments, cell apoptosis and cell viability assays were carried out to identify the tumor-suppressor function of miR-let-7b. The treatment effect of Radix ranunculus temate saponins (RRTS), one of the primary constituents extracted from the traditional Chinese medicine radix Ranunculi ternati, was identified in vitro and in vivo. The results revealed that miR-let-7b was downregulated significantly in chemoresistant ovarian cancer patients. miR-let-7b overexpression suppressed cell growth and invasion and enhanced sensitivity to Taxol of ovarian cancer cells. Furthermore, miR-let-7b levels in ovarian cancer tissue were inversely associated with collagen type III α1 chain (COL3A1) levels. COL3A1, a non-fibrillar collagen associated with chemoresistance, was targeted by miR-let-7b. RRTS showed cytotoxic effects on ovarian cancer cells through inducing miR-let-7b expression and decreasing COL3A1 expression. In addition, RRTS sensitized ovarian cancer to Taxol both in vitro and in vivo. In conclusion, the present results revealed synergistic cytotoxicity of RRTS and Taxol on against ovarian cancer cells via upregulating expression of miR-let-7b. Combination of Taxol and RRTS may be a novel treatment strategy for patients with TR ovarian cancer.
Collapse
Affiliation(s)
- Keli You
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yuejun Liu
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Le Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Haiyan Ye
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wumei Lin
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
8
|
Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines. Cancers (Basel) 2020; 12:cancers12051117. [PMID: 32365663 PMCID: PMC7280963 DOI: 10.3390/cancers12051117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Treatment of malignancies is still a major challenge in human and canine cancer, mostly due to the emergence of multidrug resistance (MDR). One of the main contributors of MDR is the overexpression P-glycoprotein (Pgp), which recognizes and extrudes various chemotherapeutics from cancer cells. Methods: To study mechanisms underlying the development of drug resistance, we established an in vitro treatment protocol to rapidly induce Pgp-mediated MDR in cancer cells. Based on a clinical observation showing that a 33-day-long, unplanned drug holiday can reverse the MDR phenotype of a canine diffuse large B-cell lymphoma patient, our aim was to use the established assay to prevent the emergence of drug resistance in the early stages of treatment. Results: We showed that an in vitro drug holiday results in the decrease of Pgp expression in MDR cell lines. Surprisingly, celecoxib, a known COX-2 inhibitor, prevented the emergence of drug-induced MDR in murine and canine lymphoma cell lines. Conclusions: Our findings suggest that celecoxib could significantly improve the efficiency of chemotherapy by preventing the development of MDR in B-cell lymphoma.
Collapse
|
9
|
Davidson B. Molecular testing on serous effusions. Diagn Cytopathol 2020; 49:640-646. [PMID: 32023012 DOI: 10.1002/dc.24392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Serous effusions constitute a significant part of the material processed and diagnosed by cytopathology laboratories. Effusions may occur in a variety of clinical settings and the differential diagnosis between these conditions often requires ancillary tests. Immunohistochemistry is still the most frequently used method in this context. However, a wide array of other methods measuring the expression of DNA, mRNA, noncoding RNA, proteins, and other compounds may be applied to the diagnosis of serous effusions, particularly in the setting of cancer, as well as to studies focusing on tumor biology and understanding of tumor progression. In addition, as serous effusions provide ideal material for molecular testing, they have in recent years assumed central role as specimens informative of prediction in the context of targeted therapy, as well as prognostication. This review discusses recent studies in this field.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,The Medical Faculty, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Brunetti M, Panagopoulos I, Micci F, Davidson B. MGMT
promoter methylation is a rare epigenetic change in malignant effusions. Cytopathology 2019; 31:12-15. [DOI: 10.1111/cyt.12782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/26/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Marta Brunetti
- Section for Cancer CytogeneticsInstitute for Cancer Genetics and InformaticsThe Norwegian Radium HospitalOslo University Hospital Oslo Norway
- Department of PathologyNorwegian Radium HospitalOslo University Hospital Oslo Norway
- Institute of Clinical MedicineFaculty of MedicineUniversity of Oslo Oslo Norway
| | - Ioannis Panagopoulos
- Section for Cancer CytogeneticsInstitute for Cancer Genetics and InformaticsThe Norwegian Radium HospitalOslo University Hospital Oslo Norway
| | - Francesca Micci
- Section for Cancer CytogeneticsInstitute for Cancer Genetics and InformaticsThe Norwegian Radium HospitalOslo University Hospital Oslo Norway
| | - Ben Davidson
- Department of PathologyNorwegian Radium HospitalOslo University Hospital Oslo Norway
- Institute of Clinical MedicineFaculty of MedicineUniversity of Oslo Oslo Norway
| |
Collapse
|
11
|
Sana G, Madigan JP, Gartner JJ, Fourrez M, Lin J, Qutob N, Narayan J, Shukla S, Ambudkar SV, Xia D, Rosenberg SA, Gottesman MM, Samuels Y, Gillet JP. Exome Sequencing of ABCB5 Identifies Recurrent Melanoma Mutations that Result in Increased Proliferative and Invasive Capacities. J Invest Dermatol 2019; 139:1985-1992.e10. [PMID: 30905807 PMCID: PMC6708748 DOI: 10.1016/j.jid.2019.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 02/09/2023]
Abstract
ABCB5 is an ABC transporter that was shown to confer low-level multidrug resistance in cancer. In this study, we show that ABCB5 was mutated in 13.75% of the 640 melanoma samples analyzed. Besides nonsense mutations, two mutation hotspots were found in the ABCB5 protein, in the drug-binding pocket and the nucleotide-binding domains. Four mutations, which are representative of the mutation pattern, were selected. ATPase assays showed that these mutations resulted in a decrease in basal ATP hydrolysis by ABCB5. To select informative melanoma cell lines, mutational profiles of the clinical samples were further analyzed. This study showed mutations in the tumor suppressor CDKN2A gene and the NRAS oncogene in 62.5% and 75%, respectively of the samples that had mutations in the ABCB5 gene. No mutation was found in the tumor suppressor PTEN gene, whereas the activating V600E mutation in the BRAF oncogene was found in 25% of the samples with a mutated ABCB5 gene. Studies in four melanoma cell lines with various genetic backgrounds showed an increase in the proliferation and migration capacity of mutant ABCB5-expressing cells, suggesting that ABCB5 plays a role in the development of melanoma as a tumor suppressor gene.
Collapse
Affiliation(s)
- Géraldine Sana
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPHYM), Namur Research Institute for Life Sciences, Faculty of Medicine, Department of Biomedical Sciences, University of Namur, Namur, Belgium
| | - James P Madigan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jared J Gartner
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Fourrez
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPHYM), Namur Research Institute for Life Sciences, Faculty of Medicine, Department of Biomedical Sciences, University of Namur, Namur, Belgium
| | - Jimmy Lin
- Washington University School of Medicine, Genome Technology Access Center, Genomics and Pathology Services, St. Louis, Missouri, USA
| | - Nouar Qutob
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jitendra Narayan
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Faculty of Sciences, Department of Biology, University of Namur, Namur, Belgium
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Yardena Samuels
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPHYM), Namur Research Institute for Life Sciences, Faculty of Medicine, Department of Biomedical Sciences, University of Namur, Namur, Belgium.
| |
Collapse
|
12
|
Li H, Meng F, Jiang L, Ren Y, Qiu Z, Yu P, Peng J. Comparison of LC-MS/MS-based targeted proteomics and conventional analytical methods for monitoring breast cancer resistance protein expression. Life Sci 2019; 231:116548. [DOI: 10.1016/j.lfs.2019.116548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
|
13
|
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18:452-464. [PMID: 29643473 PMCID: PMC6622180 DOI: 10.1038/s41568-018-0005-8] [Citation(s) in RCA: 1251] [Impact Index Per Article: 178.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier.
Collapse
Affiliation(s)
- Robert W Robey
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen M Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Antonio T Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Susan E Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University/New York Presbyterian Hospital, Manhattan, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Mlynska A, Povilaityte E, Zemleckaite I, Zilionyte K, Strioga M, Krasko J, Dobrovolskiene N, Peng MW, Intaite B, Pasukoniene V. Platinum sensitivity of ovarian cancer cells does not influence their ability to induce M2-type macrophage polarization. Am J Reprod Immunol 2018; 80:e12996. [PMID: 29904979 DOI: 10.1111/aji.12996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
PROBLEM Development of platinum resistance in ovarian cancer is mediated by both cancer cells and tumor microenvironment. Activation of epithelial-mesenchymal transition program in cancer cells may lead to enrichment for resistant clones. These processes can be affected by tumor-associated macrophages, a highly plastic population of cells that participate in tumor progression and response to treatment by shaping the microenvironment. We aimed to study how platinum resistance influences the crosstalk between macrophages and ovarian cancer cells. METHOD OF STUDY Using cisplatin-sensitive ovarian cancer cell line A2780, we developed and characterized cisplatin-resistant A2780Cis and cisplatin and doxorubicin co-resistant A2780Dox cell lines. Next, we set up an indirect coculture system with THP-1 cell line-derived M0-type-, M1-type- and M2-type-like polarized macrophages. We monitored the expression of genes associated with cellular stemness, multidrug resistance, and epithelial-mesenchymal transition in cancer cells, and expression profile of M1/M2 markers in macrophages. RESULTS Development of drug resistance in ovarian cancer cell lines was accompanied by increased migration, clonogenicity, and upregulated expression of transcription factors, associated with cellular stemness and epithelial-mesenchymal transition. Upon coculture, we noted that the most relevant changes in gene expression profile occurred in A2780 cells. Moreover, M0- and M1-type macrophages, but not M2-type macrophages, showed significant transcriptional alterations. CONCLUSION Our results provide the evidence for bidirectional interplay between cancer cells and macrophages. Independent of platinum resistance status, ovarian cancer cells polarize macrophages toward M2-like type, whereas macrophages induce epithelial-mesenchymal transition and stemness-related gene expression profile in cisplatin-sensitive, but not cisplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egle Povilaityte
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | - Inga Zemleckaite
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | - Karolina Zilionyte
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania.,Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marius Strioga
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | - Jan Krasko
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | | | - Mei-Wen Peng
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Birute Intaite
- Department of Oncogynecology, National Cancer Institute, Vilnius, Lithuania
| | - Vita Pasukoniene
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
15
|
Cerovska E, Elsnerova K, Vaclavikova R, Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin Drug Metab Toxicol 2017; 13:741-753. [PMID: 28511565 DOI: 10.1080/17425255.2017.1332179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ovarian cancer has the highest mortality rate of all cancers in women. There is currently no effective method for early diagnosis, limiting the precision of clinical expectations. Predictions of therapeutic efficacy are currently not available either. Specifically, the development of chemoresistance against conventional chemotherapy poses a fundamental complication. Some membrane transporters have been reported to influence chemoresistance, which is often associated with a poor prognosis. Areas covered: The aim of this article is to review the existing information about membrane transporters and their role in both ovarian cancer chemoresistance and its outcomes. We then highlight limitations of current methodologies and suggest alternatives providing avenues for future research. Expert opinion: Membrane transporters play an important role in development of chemoresistance and affect prognosis of ovarian cancer patients; however, due to variations in methodology and in patient populations, their specific roles have yet to be clarified. For further evaluation of the clinical utility of membrane transporters, it is essential to validate results and improve methods for marker assessment across laboratories. A promising area for future research is to identify the genetic variability in potential markers in peripheral blood. These markers would then stratify patients into defined groups for optimal intervention.
Collapse
Affiliation(s)
- Ela Cerovska
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic
| | - Katerina Elsnerova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,b 3rd Faculty of Medicine , Charles University , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Radka Vaclavikova
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| | - Pavel Soucek
- a Toxicogenomics Unit , National Institute of Public Health , Prague , Czech Republic.,c Biomedical Center, Faculty of Medicine in Pilsen , Charles University , Pilsen , Czech Republic
| |
Collapse
|
16
|
Abstract
Ovarian cancer, consisting mainly of ovarian carcinoma, is the most lethal gynecologic malignancy. Improvements in outcome for patients with advanced-stage disease are limited by intrinsic and acquired chemoresistance and by tumor heterogeneity at different anatomic sites and along disease progression. Molecules and cellular pathways mediating chemoresistance appear to be different for the different histological types of ovarian carcinoma, with most recent research focusing on serous and clear cell carcinoma. This review discusses recent data implicating various biomarkers in chemoresistance in this cancer, with focus on studies in which clinical specimens have been central.
Collapse
Affiliation(s)
- Ben Davidson
- a Department of Pathology , Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway.,b Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
17
|
Gillet JP, Andersen JB, Madigan JP, Varma S, Bagni RK, Powell K, Burgan WE, Wu CP, Calcagno AM, Ambudkar SV, Thorgeirsson SS, Gottesman MM. A Gene Expression Signature Associated with Overall Survival in Patients with Hepatocellular Carcinoma Suggests a New Treatment Strategy. Mol Pharmacol 2016; 89:263-72. [PMID: 26668215 PMCID: PMC4727122 DOI: 10.1124/mol.115.101360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in the management of liver cancer, the survival rate for patients with hepatocellular carcinoma (HCC) remains dismal. The survival benefit of systemic chemotherapy for the treatment of liver cancer is only marginal. Although the reasons for treatment failure are multifactorial, intrinsic resistance to chemotherapy plays a primary role. Here, we analyzed the expression of 377 multidrug resistance (MDR)-associated genes in two independent cohorts of patients with advanced HCC, with the aim of finding ways to improve survival in this poor-prognosis cancer. Taqman-based quantitative polymerase chain reaction revealed a 45-gene signature that predicts overall survival (OS) in patients with HCC. Using the Connectivity Map Tool, we were able to identify drugs that converted the gene expression profiles of HCC cell lines from ones matching patients with poor OS to profiles associated with good OS. We found three compounds that convert the gene expression profiles of three HCC cell lines to gene expression profiles associated with good OS. These compounds increase histone acetylation, which correlates with the synergistic sensitization of those MDR tumor cells to conventional chemotherapeutic agents, including cisplatin, sorafenib, and 5-fluorouracil. Our results indicate that it is possible to modulate gene expression profiles in HCC cell lines to those associated with better outcome. This approach also increases sensitization of HCC cells toward conventional chemotherapeutic agents. This work suggests new treatment strategies for a disease for which few therapeutic options exist.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Jesper B Andersen
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - James P Madigan
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Sudhir Varma
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Rachel K Bagni
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Katie Powell
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - William E Burgan
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Chung-Pu Wu
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Anna Maria Calcagno
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Suresh V Ambudkar
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Snorri S Thorgeirsson
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| | - Michael M Gottesman
- Laboratory of Cell Biology (J-P.G., J.P.M., C-P.W., A.M.C., S.V.A., M.M.G.) and Laboratory of Experimental Carcinogenesis (J.B.A., S.S.T.), Center for Cancer Research, National Cancer Institute, and Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases (S.V.), National Institutes of Health, Bethesda, Maryland; and the Viral Technologies Group and Molecular Detection Group, Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Marylanld (R.K.B., K.P., W.E.B.)
| |
Collapse
|
18
|
Sacchetti F, Marraccini C, D’Arca D, Pelà M, Pinetti D, Maretti E, Hanuskova M, Iannuccelli V, Costi MP, Leo E. Enhanced anti-hyperproliferative activity of human thymidylate synthase inhibitor peptide by solid lipid nanoparticle delivery. Colloids Surf B Biointerfaces 2015; 136:346-54. [DOI: 10.1016/j.colsurfb.2015.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
|
19
|
Gottesman MM, Lavi O, Hall MD, Gillet JP. Toward a Better Understanding of the Complexity of Cancer Drug Resistance. Annu Rev Pharmacol Toxicol 2015; 56:85-102. [PMID: 26514196 DOI: 10.1146/annurev-pharmtox-010715-103111] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resistance to anticancer drugs is a complex process that results from alterations in drug targets; development of alternative pathways for growth activation; changes in cellular pharmacology, including increased drug efflux; regulatory changes that alter differentiation pathways or pathways for response to environmental adversity; and/or changes in the local physiology of the cancer, such as blood supply, tissue hydrodynamics, behavior of neighboring cells, and immune system response. All of these specific mechanisms are facilitated by the intrinsic hallmarks of cancer, such as tumor cell heterogeneity, redundancy of growth-promoting pathways, increased mutation rate and/or epigenetic alterations, and the dynamic variation of tumor behavior in time and space. Understanding the relative contribution of each of these factors is further complicated by the lack of adequate in vitro models that mimic clinical cancers. Several strategies to use current knowledge of drug resistance to improve treatment of cancer are suggested.
Collapse
Affiliation(s)
- Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Orit Lavi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, B-5000 Namur, Belgium;
| |
Collapse
|
20
|
Gottesman MM, Pastan IH. The Role of Multidrug Resistance Efflux Pumps in Cancer: Revisiting a JNCI Publication Exploring Expression of the MDR1 (P-glycoprotein) Gene. J Natl Cancer Inst 2015; 107:djv222. [PMID: 26286731 DOI: 10.1093/jnci/djv222] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michael M Gottesman
- Laboratory of Cell Biology (MMG) and Laboratory of Molecular Biology (IHP), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Ira H Pastan
- Laboratory of Cell Biology (MMG) and Laboratory of Molecular Biology (IHP), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Chen F, Liu N. A 10-gene expression signature of Notch pathway predicts recurrence in ovarian carcinoma. Oncol Lett 2015; 10:1704-1708. [PMID: 26622736 DOI: 10.3892/ol.2015.3382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 06/08/2015] [Indexed: 12/31/2022] Open
Abstract
Patients with ovarian carcinoma are at high risk of tumor recurrence. In the present study, 81 Notch pathway genes were selected to find recurrence-related genes in The Cancer Genome Atlas dataset. A 10-gene signature (FZD4, HES1, PSEN2, JAG2, PPARG, FOS, HEY1, CDC16, MFNG, and EP300) was identified and validated that is associated with recurrence-free survival time, but not with overall survival time, in the TCGA dataset and in other two independent datasets, GSE9891 and GSE30161. This gene signature gave a significant performance in discriminating patients at high risk of recurrence from those at low risk, as measured by the area under the receiver operating characteristic curve. Cox proportional hazards regression analyses demonstrated that the prognostic value of this 10-gene set is independent of other clinical variables in all three datasets. The potential as a biomarker for predicting high- and low-risk subgroups for recurrence in ovarian cancer patients deserves further investigation in prospective patient cohorts in the future.
Collapse
Affiliation(s)
- Fang Chen
- Department of Obstetrics and Gynecology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Naifu Liu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
22
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
23
|
Lloyd KL, Cree IA, Savage RS. Prediction of resistance to chemotherapy in ovarian cancer: a systematic review. BMC Cancer 2015; 15:117. [PMID: 25886033 PMCID: PMC4371880 DOI: 10.1186/s12885-015-1101-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/20/2015] [Indexed: 11/17/2022] Open
Abstract
Background Patient response to chemotherapy for ovarian cancer is extremely heterogeneous and there are currently no tools to aid the prediction of sensitivity or resistance to chemotherapy and allow treatment stratification. Such a tool could greatly improve patient survival by identifying the most appropriate treatment on a patient-specific basis. Methods PubMed was searched for studies predicting response or resistance to chemotherapy using gene expression measurements of human tissue in ovarian cancer. Results 42 studies were identified and both the data collection and modelling methods were compared. The majority of studies utilised fresh-frozen or formalin-fixed paraffin-embedded tissue. Modelling techniques varied, the most popular being Cox proportional hazards regression and hierarchical clustering which were used by 17 and 11 studies respectively. The gene signatures identified by the various studies were not consistent, with very few genes being identified by more than two studies. Patient cohorts were often noted to be heterogeneous with respect to chemotherapy treatment undergone by patients. Conclusions A clinically applicable gene signature capable of predicting patient response to chemotherapy has not yet been identified. Research into a predictive, as opposed to prognostic, model could be highly beneficial and aid the identification of the most suitable treatment for patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine L Lloyd
- MOAC DTC, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Ian A Cree
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Richard S Savage
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. .,Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
24
|
Nymoen DA, Holth A, Hetland Falkenthal TE, Tropé CG, Davidson B. CIAPIN1 and ABCA13 are markers of poor survival in metastatic ovarian serous carcinoma. Mol Cancer 2015; 14:44. [PMID: 25889687 PMCID: PMC4336750 DOI: 10.1186/s12943-015-0317-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Background The objective of this study was to investigate the expression and clinical role of 14 genes previously shown to be associated with chemotherapy response and/or progression-free survival in a smaller series of ovarian serous carcinoma effusions. Methods Advanced-stage serous ovarian carcinoma effusions (n = 150) were analyzed for mRNA expression of AKR1C1, ABCA4, ABCA13, ABCB10, BIRC6, CASP9, CIAPIN1, FAS, MGMT, MUTYH, POLH, SRC, TBRKB and XPA using quantitative real-time PCR. mRNA expression was studied for association with clinicopathologic parameters, including chemotherapy response and survival. Results ABCA4 mRNA expression was significantly related to better (complete) chemotherapy response at diagnosis in the entire cohort (p = 0.018), whereas higher POLH mRNA levels were significantly related to better chemoresponse at diagnosis in analysis to 58 patients with pre-chemotherapy effusions treated with standard chemotherapy (carboplatin + paclitaxel; p = 0.023). In univariate survival analysis for patients with pre-chemotherapy effusions (n = 77), CIAPIN1 mRNA expression was significantly related to shorter overall (p = 0.007) and progression-free (p = 0.038) survival, whereas ABCA13 mRNA expression was significantly related to shorter OS (p = 0.024). Higher CIAPIN1 mRNA expression was an independent marker of poor overall survival in Cox multivariate analysis (p = 0.044). Conclusions Our data identify ABCA4 and POLH as markers of better chemotherapy response in metastatic serous carcinoma. CIAPIN1 and ABCA13 may be novel markers of poor outcome in pre-chemotherapy serous carcinoma effusions.
Collapse
Affiliation(s)
- Dag Andre Nymoen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway.
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway.
| | | | - Claes G Tropé
- Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway. .,University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway. .,University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| |
Collapse
|
25
|
Integrative analyses of genetic variation, epigenetic regulation, and the transcriptome to elucidate the biology of platinum sensitivity. BMC Genomics 2014; 15:292. [PMID: 24739237 PMCID: PMC3996490 DOI: 10.1186/1471-2164-15-292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/09/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Using genome-wide genetic, gene expression, and microRNA expression (miRNA) data, we developed an integrative approach to investigate the genetic and epigenetic basis of chemotherapeutic sensitivity. RESULTS Through a sequential multi-stage framework, we identified genes and miRNAs whose expression correlated with platinum sensitivity, mapped these to genomic loci as quantitative trait loci (QTLs), and evaluated the associations between these QTLs and platinum sensitivity. A permutation analysis showed that top findings from our approach have a much lower false discovery rate compared to those from a traditional GWAS of drug sensitivity. Our approach identified five SNPs associated with 10 miRNAs and the expression level of 15 genes, all of which were associated with carboplatin sensitivity. Of particular interest was one SNP (rs11138019), which was associated with the expression of both miR-30d and the gene ABCD2, which were themselves correlated with both carboplatin and cisplatin drug-specific phenotype in the HapMap samples. Functional study found that knocking down ABCD2 in vitro led to increased apoptosis in ovarian cancer cell line SKOV3 after cisplatin treatment. Over-expression of miR-30d in vitro caused a decrease in ABCD2 expression, suggesting a functional relationship between the two. CONCLUSIONS We developed an integrative approach to the investigation of the genetic and epigenetic basis of human complex traits. Our approach outperformed standard GWAS and provided hints at potential biological function. The relationships between ABCD2 and miR-30d, and ABCD2 and platin sensitivity were experimentally validated, suggesting a functional role of ABCD2 and miR-30d in sensitivity to platinating agents.
Collapse
|
26
|
Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 2013; 3:256. [PMID: 24093089 PMCID: PMC3782691 DOI: 10.3389/fonc.2013.00256] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/11/2013] [Indexed: 01/13/2023] Open
Abstract
More than one third of ovarian cancer patients present with ascites at diagnosis, and almost all have ascites at recurrence. The presence of ascites correlates with the peritoneal spread of ovarian cancer and is associated with poor disease prognosis. Malignant ascites acts as a reservoir of a complex mixture of soluble factors and cellular components which provide a pro-inflammatory and tumor-promoting microenvironment for the tumor cells. Subpopulations of these tumor cells exhibit cancer stem-like phenotypes, possess enhanced resistance to therapies and the capacity for distal metastatic spread and recurrent disease. Thus, ascites-derived malignant cells and the ascites microenvironment represent a major source of morbidity and mortality for ovarian cancer patients. This review focuses on recent advances in our understanding of the molecular, cellular, and functional characteristics of the cellular populations within ascites and discusses their contributions to ovarian cancer metastasis, chemoresistance, and recurrence. We highlight in particular recent translational findings which have used primary ascites-derived tumor cells as a tool to understand the pathogenesis of the disease, yielding new insights and targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Nuzhat Ahmed
- Women's Cancer Research Centre, Royal Women's Hospital , Parkville, VIC , Australia ; Department of Obstetrics and Gynaecology, University of Melbourne , Parkville, VIC , Australia ; Reproductive Development and Cancer Laboratory, Prince Henry's Institute for Medical Research , Melbourne, VIC , Australia
| | | |
Collapse
|
27
|
Patel C, Stenke L, Varma S, Lindberg ML, Björkholm M, Sjöberg J, Viktorsson K, Lewensohn R, Landgren O, Gottesman MM, Gillet JP. Multidrug resistance in relapsed acute myeloid leukemia: evidence of biological heterogeneity. Cancer 2013; 119:3076-83. [PMID: 23674237 DOI: 10.1002/cncr.28098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/04/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Studies of mechanisms mediating resistance to chemotherapy led to the discovery of the multidrug transporter ABCB1 (ATP-binding cassette, subfamily B, member 1), often expressed in leukemic cells of patients with acute myeloid leukemia (AML). Most clinical trials evaluating the strategy of inhibiting efflux-mediated chemotherapeutic resistance have been unsuccessful, clearly indicating the need for a better approach. METHODS This study investigated the clinical relevance of 380 genes whose expression has been shown to affect the response to chemotherapy, mostly through in vitro studies, in 11 paired samples obtained at AML diagnosis and at relapse. The expression profiling of these 380 genes was performed using TaqMan-based quantitative reverse-transcription polymerase chain reaction. Patients had a median age of 58 years at diagnosis, a median duration of complete remission of 284.5 days, and a median overall survival of 563 days. Cytogenetic abnormalities were detected at diagnosis in 4 patients, whereas 5 displayed a normal karyotype and 2 were not investigated. RESULTS Hierarchical clustering shows that samples taken at diagnosis and relapse clustered in pairs for 6 patients of the 11 studied, suggesting recurrence of the same leukemic blast, whereas for the other 5 patients, the data indicate their relapse blasts arose from different origins. A patient-by-patient analysis of the paired samples led to the striking observation that each had a unique gene signature representing different mechanisms of resistance. CONCLUSIONS The data underline the need for personalized molecular analysis to tailor treatment for patients with AML.
Collapse
Affiliation(s)
- Chirayu Patel
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kipps E, Tan DSP, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 2013; 13:273-82. [PMID: 23426401 PMCID: PMC4673904 DOI: 10.1038/nrc3432] [Citation(s) in RCA: 412] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Malignant ascites presents a considerable clinical challenge to the management of ovarian cancer, but also provides a wealth of opportunities for translational research. The accessibility of ascitic fluid and its cellular components make it an excellent source of tumour tissue for the investigation of prognostic and predictive biomarkers, pharmacodynamic markers and for molecular profiling analysis. In this Opinion article, we discuss recent advances in our understanding of its pathophysiology, the development of new methods to characterize its molecular features and how these findings can be used to improve the treatment of malignant ascites, particularly in the context of ovarian cancer.
Collapse
Affiliation(s)
- Emma Kipps
- The Institute of Cancer Research/Royal Marsden Hospital, Medicine, Downs Road, Sutton SM2 5PT, UK
| | | | | |
Collapse
|
29
|
MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood 2013; 121:4115-25. [PMID: 23532732 DOI: 10.1182/blood-2012-08-449140] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify molecular determinants of histone deacetylase inhibitor (HDI) resistance, we selected HuT78 cutaneous T-cell lymphoma (CTCL) cells with romidepsin in the presence of P-glycoprotein inhibitors to prevent transporter upregulation. Resistant sublines were 250- to 385-fold resistant to romidepsin and were resistant to apoptosis induced by apicidin, entinostat, panobinostat, belinostat, and vorinostat. A custom TaqMan array identified increased insulin receptor (INSR) gene expression; immunoblot analysis confirmed increased protein expression and a four- to eightfold increase in mitogen-activated protein kinase (MAPK) kinase (MEK) phosphorylation in resistant cells compared with parental cells. Resistant cells were exquisitely sensitive to MEK inhibitors, and apoptosis correlated with restoration of proapoptotic Bim. Romidepsin combined with MEK inhibitors yielded greater apoptosis in cells expressing mutant KRAS compared with romidepsin treatment alone. Gene expression analysis of samples obtained from patients with CTCL enrolled on the NCI1312 phase 2 study of romidepsin in T-cell lymphoma suggested perturbation of the MAPK pathway by romidepsin. Immunohistochemical analysis of Bim expression demonstrated decreased expression in some skin biopsies at disease progression. These findings implicate increased activation of MEK and decreased Bim expression as a resistance mechanism to HDIs, supporting combination of romidepsin with MEK inhibitors in clinical trials.
Collapse
|
30
|
Abstract
Although advances in genomics during the last decade have opened new avenues for translational research and allowed the direct evaluation of clinical samples, there is still a need for reliable preclinical models to test therapeutic strategies. Human cancer-derived cell lines are the most widely used models to study the biology of cancer and to test hypotheses to improve the efficacy of cancer treatment. Since the development of the first cancer cell line, the clinical relevance of these models has been continuously questioned. Based upon recent studies that have fueled the debate, we review the major events in the development of the in vitro models and the emergence of new technologies that have revealed important issues and limitations concerning human cancer cell lines as models. All cancer cell lines do not have equal value as tumor models. Some have been successful, whereas others have failed. However, the success stories should not obscure the growing body of data that motivates us to develop new in vitro preclinical models that would substantially increase the success rate of new in vitro-assessed cancer treatments.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, 37 Convent Dr, Rm 2108, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O'Leary JJ, Gottesman M, Clynes M. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One 2012. [PMID: 22792399 DOI: 10.1371/journal.pone.0040717] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.
Collapse
Affiliation(s)
- Britta Stordal
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O'Leary JJ, Gottesman M, Clynes M. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One 2012. [PMID: 22792399 DOI: 10.1371/journal.pone.0040717]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.
Collapse
Affiliation(s)
- Britta Stordal
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O'Leary JJ, Gottesman M, Clynes M. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One 2012; 7:e40717. [PMID: 22792399 PMCID: PMC3394717 DOI: 10.1371/journal.pone.0040717] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/12/2012] [Indexed: 02/07/2023] Open
Abstract
The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.
Collapse
Affiliation(s)
- Britta Stordal
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gillet JP, Calcagno AM, Varma S, Davidson B, Bunkholt Elstrand M, Ganapathi R, Kamat AA, Sood AK, Ambudkar SV, Seiden MV, Rueda BR, Gottesman MM. Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma. Clin Cancer Res 2012; 18:3197-206. [PMID: 22492981 PMCID: PMC3376649 DOI: 10.1158/1078-0432.ccr-12-0056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assesses the ability of multidrug resistance (MDR)-associated gene expression patterns to predict survival in patients with newly diagnosed carcinoma of the ovary. The scope of this research differs substantially from that of previous reports, as a very large set of genes was evaluated whose expression has been shown to affect response to chemotherapy. EXPERIMENTAL DESIGN We applied a customized TaqMan low density array, a highly sensitive and specific assay, to study the expression profiles of 380 MDR-linked genes in 80 tumor specimens collected at initial surgery to debulk primary serous carcinoma. The RNA expression profiles of these drug resistance genes were correlated with clinical outcomes. RESULTS Leave-one-out cross-validation was used to estimate the ability of MDR gene expression to predict survival. Although gene expression alone does not predict overall survival (OS; P = 0.06), four covariates (age, stage, CA125 level, and surgical debulking) do (P = 0.03). When gene expression was added to the covariates, we found an 11-gene signature that provides a major improvement in OS prediction (log-rank statistic P < 0.003). The predictive power of this 11-gene signature was confirmed by dividing high- and low-risk patient groups, as defined by their clinical covariates, into four specific risk groups on the basis of expression levels. CONCLUSION This study reveals an 11-gene signature that allows a more precise prognosis for patients with serous cancer of the ovary treated with carboplatin- and paclitaxel-based therapy. These 11 new targets offer opportunities for new therapies to improve clinical outcome in ovarian cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC, Kersbergen A, Zander SAL, Pajic M, Jaspers JE, Jonkers M, Lodén M, Sol W, van der Burg E, Wesseling J, Gillet JP, Gottesman MM, Gribnau J, Wessels L, Linn SC, Jonkers J, Borst P. Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 2012; 72:2350-61. [PMID: 22396490 DOI: 10.1158/0008-5472.can-11-4201] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lack of markers to predict chemotherapy responses in patients poses a major handicap in cancer treatment. We searched for gene expression patterns that correlate with docetaxel or cisplatin response in a mouse model for breast cancer associated with BRCA1 deficiency. Array-based expression profiling did not identify a single marker gene predicting docetaxel response, despite an increase in Abcb1 (P-glycoprotein) expression that was sufficient to explain resistance in several poor responders. Intertumoral heterogeneity explained the inability to identify a predictive gene expression signature for docetaxel. To address this problem, we used a novel algorithm designed to detect differential gene expression in a subgroup of the poor responders that could identify tumors with increased Abcb1 transcript levels. In contrast, standard analytical tools, such as significance analysis of microarrays, detected a marker only if it correlated with response in a substantial fraction of tumors. For example, low expression of the Xist gene correlated with cisplatin hypersensitivity in most tumors, and it also predicted long recurrence-free survival of HER2-negative, stage III breast cancer patients treated with intensive platinum-based chemotherapy. Our findings may prove useful for selecting patients with high-risk breast cancer who could benefit from platinum-based therapy.
Collapse
Affiliation(s)
- Sven Rottenberg
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A 2011; 108:18708-13. [PMID: 22068913 DOI: 10.1073/pnas.1111840108] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although in vitro models have been a cornerstone of anti-cancer drug development, their direct applicability to clinical cancer research has been uncertain. Using a state-of-the-art Taqman-based quantitative RT-PCR assay, we investigated the multidrug resistance (MDR) transcriptome of six cancer types, in established cancer cell lines (grown in monolayer, 3D scaffold, or in xenograft) and clinical samples, either containing >75% tumor cells or microdissected. The MDR transcriptome was determined a priori based on an extensive curation of the literature published during the last three decades, which led to the enumeration of 380 genes. No correlation was found between clinical samples and established cancer cell lines. As expected, we found up-regulation of genes that would facilitate survival across all cultured cancer cell lines evaluated. More troubling, however, were data showing that all of the cell lines, grown either in vitro or in vivo, bear more resemblance to each other, regardless of the tissue of origin, than to the clinical samples they are supposed to model. Although cultured cells can be used to study many aspects of cancer biology and response of cells to drugs, this study emphasizes the necessity for new in vitro cancer models and the use of primary tumor models in which gene expression can be manipulated and small molecules tested in a setting that more closely mimics the in vivo cancer microenvironment so as to avoid radical changes in gene expression profiles brought on by extended periods of cell culture.
Collapse
|