1
|
Wani SUD, Masoodi MH, Gautam SP, Shivakumar HG, Alshehri S, Ghoneim MM, Alam P, Shakeel F. Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers (Basel) 2022; 14:5475. [PMID: 36559842 PMCID: PMC9788421 DOI: 10.3390/polym14245475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Silk is a wonderful biopolymer that has a long history of medical applications. Surgical cords and medically authorised human analogues made of silk have a long history of use in management. We describe the use of silk in the treatment of eye diseases in this review by looking at the usage of silk fibroin for eye-related drug delivery applications and medication transfer to the eyes. During this ancient art endeavour, a reduced engineering project that employed silk as a platform for medicine delivery or a cell-filled matrix helped reignite interest. With considerable attention, this study explores the present usage of silk in ocular-based drug delivery. This paper also examines emerging developments with the use of silk as a biopolymer for the treatment of eye ailments. As treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and other retinal diseases and degenerations are developed, the trans-scleral route of drug delivery holds great promise for the selective, sustained-release delivery of these novel therapeutic compounds. We should expect a swarm of silk-inspired materials to enter clinical testing and use on the surface as the secrets of silk are unveiled. This article finishes with a discussion on potential silk power, which adds to better ideas and enhanced ocular medicine delivery.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, Faculty of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Faculty of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | | | - H. G. Shivakumar
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Quiñones OG, Pierre MBR. Cutaneous Application of Celecoxib for Inflammatory and Cancer Diseases. Curr Cancer Drug Targets 2020; 19:5-16. [PMID: 29714143 DOI: 10.2174/1568009618666180430125201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) and particularly selective cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Cxb) are considered promising cancer chemopreventive for colon, breast, prostate, lung, and skin cancers. However, the clinical application to the prevention is limited by concerns about safety, potential to serious toxicity (mainly for healthy individuals), efficacy and optimal treatment regimen. Cxb exhibits advantages as potent antiinflammatory and gastrointestinal tolerance compared with conventional NSAID's. Recent researches suggest that dermatological formulations of Cxb are more suitable than oral administration in the treatment of cutaneous disease, including skin cancer. To date, optimism has been growing regarding the exploration of the topical application of Cxb (in the prevention of skin cancers and treatment of cutaneous inflammation) or transdermal route reducing risks of systemic side effects. OBJECTIVE This paper briefly summarizes our current knowledge of the development of the cutaneous formulations or delivery systems for Cxb as anti-inflammatory drug (for topical or transdermal application) as well its chemopreventive properties focused on skin cancer. CONCLUSION New perspectives emerge from the growing knowledge, bringing innovative techniques combining the action of Cxb with other substances or agents which act in a different way, but complementary, increasing the efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Oliesia Gonzalez Quiñones
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| | - Maria Bernadete Riemma Pierre
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019; 24:1524-1538. [PMID: 31102733 DOI: 10.1016/j.drudis.2019.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
Delivering therapeutics to the eye is challenging on multiple levels: rapid clearance of eyedrops from the ocular surface requires frequent instillation, which is difficult for patients; transport of drugs across the blood-retinal barrier when drugs are administered systemically, and the cornea when drugs are administered topically, is difficult to achieve; limited drug penetration to the back of the eye owing to the cornea, conjunctiva, sclera and vitreous barriers. Nanomedicine offers many advantages over conventional ophthalmic medications for effective ocular drug delivery because nanomedicine can increase the therapeutic index by overcoming ocular barriers, improving drug-release profiles and reducing potential drug toxicity. In this review, we highlight the therapeutic implications of nanomedicine for ocular drug delivery.
Collapse
Affiliation(s)
- Tuo Meng
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vineet Kulkarni
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Russell Simmers
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Physics, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vikram Brar
- Department of Ophthalmology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
4
|
Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release 2019; 296:68-80. [PMID: 30660629 DOI: 10.1016/j.jconrel.2019.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Noninfectious uveitis is a potentially blinding ocular condition that often requires treatment with corticosteroids to prevent inflammation-related ocular complications. Severe forms of uveitis such as panuveitis that affects the whole eye often require a combination of topical and either regional or systemic corticosteroid. Regional corticosteroids are currently delivered inside the eye by intravitreal injection (e.g. Ozurdex®, an intravitreal dexamethasone implant). Intravitreal injection is associated with rare but potentially serious side effects, including endophthalmitis, retinal and vitreous hemorrhage, and retinal detachment. Subconjunctival (SCT) injection is a less invasive option that is a common route used for post-surgical drug administration and treatment of infection and severe inflammation. However, it is the water soluble form of dexamethasone, dexamethasone sodium phosphate (DSP), that has been demonstrated to achieve high intraocular penetration with subconjunctival injection. It is difficult to load highly water soluble drugs, such as DSP, and achieve sustained drug release using conventional encapsulation methods. We found that use of carboxyl-terminated poly(lactic-co-glycolic acid) (PLGA) allowed encapsulation of DSP into biodegradable nanoparticles (NP) with relatively high drug content (6% w/w) if divalent zinc ions were used as an ionic "bridge" between the PLGA and DSP. DSP-Zn-NP had an average diameter of 210 nm, narrow particle size distribution (polydispersity index ~0.1), and near neutral surface charge (-9 mV). DSP-Zn-NP administered by SCT injection provided detectable DSP levels in both the anterior chamber and vitreous chamber of the eye for at least 3 weeks. In a rat model of experimental autoimmune uveitis (EAU), inflammation was significantly reduced in both the front and back of the eye in animals that received a single SCT injection of DSP-Zn-NP as compared to animals that received either aqueous DSP solution or phosphate buffered saline (PBS). DSP-Zn-NP efficacy was evidenced by a reduced clinical disease score, decreased expression of various inflammatory cytokines, and preserved retinal structure and function. Furthermore, SCT DSP-Zn-NP significantly reduced microglia cell density in the retina, a hallmark of EAU in rats. DSP-Zn-NP hold promise as a new strategy to treat noninfectious uveitis and potentially other ocular inflammatory disorders.
Collapse
|
5
|
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 2018; 126:96-112. [PMID: 28916492 DOI: 10.1016/j.addr.2017.09.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Overcoming the physiological barriers in the eye remains a key obstacle in the field of ocular drug delivery. While ocular barriers naturally have a protective function, they also limit drug entry into the eye. Various pharmaceutical strategies, such as novel formulations and physical force-based techniques, have been investigated to weaken these barriers and transport therapeutic agents effectively to both the anterior and the posterior segments of the eye. This review summarizes and discusses the recent research progress in the field of ocular drug delivery with a focus on the application of physical methods, including electrical fields, sonophoresis, and microneedles, which can enhance penetration efficiency by transiently disrupting the ocular barriers in a minimally or non-invasive manner.
Collapse
|
6
|
A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles. Eur J Pharm Biopharm 2014; 88:104-15. [DOI: 10.1016/j.ejpb.2014.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 12/31/2022]
|
7
|
Vooturi SK, Kadam RS, Kompella UB. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery. Mol Pharm 2012; 9:3136-46. [PMID: 23003105 DOI: 10.1021/mp300245r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we aim to design and synthesize prodrugs of gatifloxacin targeting organic cation transporter (OCT), monocarboxylate transporter (MCT), and ATB (0, +) transporters and to identify a prodrug with enhanced delivery to the back of the eye. Dimethylamino-propyl, carboxy-propyl, and amino-propyl(2-methyl) derivatives of gatifloxacin (GFX), DMAP-GFX, CP-GFX, and APM-GFX, were designed and synthesized to target OCT, MCT, and ATB (0, +) transporters, respectively. An LC-MS method was developed to analyze drug and prodrug levels in various studies. Solubility and log D (pH 7.4) were measured for prodrugs and the parent drug. The permeability of the prodrugs was determined in the cornea, conjunctiva, and sclera-choroid-retinal pigment epitheluim (SCRPE) and compared with gatifloxacin using an Ussing chamber assembly. Permeability mechanisms were elucidated by determining the transport in the presence of transporter specific inhibitors. 1-Methyl-4-phenylpyridinium iodide (MPP+), nicotinic acid sodium salt, and α-methyl-DL-tryptophan were used to inhibit OCT, MCT, and ATB (0, +) transporters, respectively. A prodrug selected based on in vitro studies was administered as an eye drop to pigmented rabbits, and the delivery to various eye tissues including vitreous humor was compared with gatifloxacin dosing. DMAP-GFX exhibited 12.8-fold greater solubility than GFX. All prodrugs were more lipophilic, with the measured log D (pH 7.4) values ranging from 0.05 to 1.04, when compared to GFX (log D: -1.15). DMAP-GFX showed 1.4-, 1.8-, and 1.9-fold improvement in permeability across the cornea, conjunctiva, and SCRPE when compared to GFX. Moreover, it exhibited reduced permeability in the presence of MPP+ (competitive inhibitor of OCT), indicating OCT-mediated transport. CP-GFX showed 1.2-, 2.3-, and 2.5-fold improvement in permeability across the cornea, conjunctiva, and SCRPE, respectively. In the presence of nicotinic acid (competitive inhibitor of MCT), the permeability of CP-GFX was reduced across the conjunctiva. However, the cornea and SCRPE permeability of CP-GFX was not affected by nicotinic acid. APM-GFX did not show any improvement in permeability when compared to GFX across the cornea, conjunctiva, and SCRPE. Based on solubility and permeability, DMAP-GFX was selected for in vivo studies. DMAP-GFX showed 3.6- and 1.95-fold higher levels in vitreous humor and CRPE compared to that of GFX at 1 h after topical dosing. In vivo conversion of DMAP-GFX prodrug to GFX was quantified in tissues isolated at 1 h after dosing. The parent drug-to-prodrug ratio was 8, 70, 24, 21, 29, 13, 55, and 60% in the cornea, conjunctiva, iris-ciliary body, aqueous humor, sclera, CRPE, retina, and vitreous humor, respectively. In conclusion, DMAP-GFX prodrug enhanced solubility, log D, as well as OCT mediated delivery of gatifloxacin to the back of the eye.
Collapse
Affiliation(s)
- Sunil K Vooturi
- Nanomedicine and Drug Delivery Laboratory, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
8
|
Small molecule modulators of aggregation in synthetic melanin polymerizations. Bioorg Med Chem Lett 2012; 22:5503-7. [PMID: 22835871 DOI: 10.1016/j.bmcl.2012.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 11/23/2022]
Abstract
There are numerous potential applications for melanin-binding compounds, and new methods are of interest to identify melanin-binding agents. A portion of the polymerization to eumelanin, the black to brown pigment in humans, is thought to be supramolecular aggregation of nanoparticles derived from dihydroxyindoles. Starting with chloroquine, a known eumelanin-binding compound, the ability of small molecules to influence aggregation in synthetic eumelanin polymerizations was investigated. Twenty-eight compounds were tested, including pharmaceuticals, dyes, aromatics, and amines. Compounds that either accelerate or delay the appearance of macroscopic particles in synthetic eumelanin polymerizations were uncovered.
Collapse
|