1
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
2
|
Aguilar-Rojas A, Castellanos-Castro S, Matondo M, Gianetto QG, Varet H, Sismeiro O, Legendre R, Fernandes J, Hardy D, Coppée JY, Olivo-Marin JC, Guillen N. Insights into amebiasis using a human 3D-intestinal model. Cell Microbiol 2020; 22:e13203. [PMID: 32175652 DOI: 10.1111/cmi.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México, Mexico
| | - Silvia Castellanos-Castro
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y Humanidades, Ciudad de México, Mexico
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Julien Fernandes
- Institut Pasteur, UTechSPBI, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | | | - Nancy Guillen
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
3
|
Abstract
The generation of tissue engineered organs from autologous cells will allow replacement of diseased or absent organs without the need for immunosuppression. Common steps of tissue engineering include isolation of pluripotent or multipotent stem cells, preparation of synthetic or biologic scaffold, and implantation into a host to support the proliferation of engineered tissue. Some organs have been successfully transplanted in human patients; gastrointestinal tract tissues are nearing clinical introduction. The state of the science has progressed rapidly and providers and researchers alike must take appropriate steps to ensure strict adherence to ethical standards before introduction to human therapy.
Collapse
Affiliation(s)
- Daniel Levin
- Division of Pediatric Surgery, Department of Surgery, University of Virginia, 1300 Jefferson Park Avenue, PO BOX 800709, Charlottesville, VA 22908-0709, USA.
| |
Collapse
|
4
|
Ponce de León-Rodríguez MDC, Guyot JP, Laurent-Babot C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit Rev Food Sci Nutr 2018; 59:3648-3666. [DOI: 10.1080/10408398.2018.1506734] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Jean-Pierre Guyot
- NUTRIPASS—University of Montpellier, IRD, Montpellier SupAgro, Montpellier, France
| | | |
Collapse
|
5
|
Carr DF, Ayehunie S, Davies A, Duckworth CA, French S, Hall N, Hussain S, Mellor HR, Norris A, Park BK, Penrose A, Pritchard DM, Probert CS, Ramaiah S, Sadler C, Schmitt M, Shaw A, Sidaway JE, Vries RG, Wagoner M, Pirmohamed M. Towards better models and mechanistic biomarkers for drug-induced gastrointestinal injury. Pharmacol Ther 2017; 172:181-194. [DOI: 10.1016/j.pharmthera.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Vu LT, Less RR, Rajagopalan P. The promise of organotypic hepatic and gastrointestinal models. Trends Biotechnol 2014; 32:406-13. [PMID: 24845962 DOI: 10.1016/j.tibtech.2014.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 01/14/2023]
Abstract
Advances in the design and assembly of in vitro organotypic liver and gastrointestinal (GI) models can accelerate our understanding of metabolism, nutrient absorption, and the effect of microbial flora. Such models can provide comprehensive information on how of environmental toxins, drugs, and pharmaceuticals interact with and within these organs. Information obtained from such models could elucidate the complicated cascades of signaling mechanisms that occur in vivo. Because experiments on large-scale animal models are expensive and resource intensive, the design of organotypic models has renewed significance. The challenges and approaches to designing liver and GI models are similar. Because these organs are in close proximity and interact continually, we have described recent design considerations to guide future tissue models.
Collapse
Affiliation(s)
- Lucas T Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebekah R Less
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|