1
|
Basrai A, Blundell TL, Pandurangan AP. Computational analyses of drug resistance mutations in katG and emb complexes in Mycobacterium tuberculosis. Proteins 2025; 93:359-371. [PMID: 38483037 PMCID: PMC11623437 DOI: 10.1002/prot.26684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 12/07/2024]
Abstract
The number of antibiotic resistant pathogens is increasing rapidly, and with this comes a substantial socioeconomic cost that threatens much of the world. To alleviate this problem, we must use antibiotics in a more responsible and informed way, further our understanding of the molecular basis of drug resistance, and design new antibiotics. Here, we focus on a key drug-resistant pathogen, Mycobacterium tuberculosis, and computationally analyze trends in drug-resistant mutations in genes of the proteins embA, embB, embC, and katG, which play essential roles in the action of the first-line drugs ethambutol and isoniazid. We use docking to predict binding modes of isoniazid to katG that agree with suggested binding sites found in our laboratory using cryo-EM. Using mutant stability predictions, we recapitulate the idea that resistance occurs when katG's heme cofactor is destabilized rather than due to a decrease in affinity to isoniazid. Conversely, we have identified resistance mutations that affect the affinity of ethambutol more drastically than the affinity of the natural substrate of embB. With this, we illustrate that we can distinguish between the two types of drug resistance-cofactor destabilization and drug affinity reduction-suggesting potential uses in the prediction of novel drug-resistant mutations.
Collapse
Affiliation(s)
- Aadam Basrai
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of MedicineUniversity of CambridgeCambridgeUK
| | - Tom L. Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of MedicineUniversity of CambridgeCambridgeUK
| | - Arun Prasad Pandurangan
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
2
|
Marquês JT, Frazão De Faria C, Reis M, Machado D, Santos S, Santos MDS, Viveiros M, Martins F, De Almeida RFM. In vitro Evaluation of Isoniazid Derivatives as Potential Agents Against Drug-Resistant Tuberculosis. Front Pharmacol 2022; 13:868545. [PMID: 35600870 PMCID: PMC9114799 DOI: 10.3389/fphar.2022.868545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The upsurge of multidrug-resistant tuberculosis has toughened the challenge to put an end to this epidemic by 2030. In 2020 the number of deaths attributed to tuberculosis increased as compared to 2019 and newly identified multidrug-resistant tuberculosis cases have been stably close to 3%. Such a context stimulated the search for new and more efficient antitubercular compounds, which culminated in the QSAR-oriented design and synthesis of a series of isoniazid derivatives active against Mycobacterium tuberculosis. From these, some prospective isonicotinoyl hydrazones and isonicotinoyl hydrazides are studied in this work. To evaluate if the chemical derivatizations are generating compounds with a good performance concerning several in vitro assays, their cytotoxicity against human liver HepG2 cells was determined and their ability to bind human serum albumin was thoroughly investigated. For the two new derivatives presented in this study, we also determined their lipophilicity and activity against both the wild type and an isoniazid-resistant strain of Mycobacterium tuberculosis carrying the most prevalent mutation on the katG gene, S315T. All compounds were less cytotoxic than many drugs in clinical use with IC50 values after a 72 h challenge always higher than 25 µM. Additionally, all isoniazid derivatives studied exhibited stronger binding to human serum albumin than isoniazid itself, with dissociation constants in the order of 10−4–10−5 M as opposed to 10−3 M, respectively. This suggests that their transport and half-life in the blood stream are likely improved when compared to the parent compound. Furthermore, our results are a strong indication that the N′ = C bond of the hydrazone derivatives of INH tested is essential for their enhanced activity against the mutant strain of M. tuberculosis in comparison to both their reduced counterparts and INH.
Collapse
Affiliation(s)
- Joaquim Trigo Marquês
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Frazão De Faria
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marina Reis
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Superior de Educação e Ciências (ISEC Lisboa), Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria da Soledade Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Medica, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Filomena Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Filomena Martins, ; Rodrigo F. M. De Almeida,
| | - Rodrigo F. M. De Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Filomena Martins, ; Rodrigo F. M. De Almeida,
| |
Collapse
|
3
|
Rani A, Johansen MD, Roquet-Banères F, Kremer L, Awolade P, Ebenezer O, Singh P, Sumanjit, Kumar V. Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorg Med Chem Lett 2020; 30:127576. [PMID: 32980514 DOI: 10.1016/j.bmcl.2020.127576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
A series of 4-aminoquinoline-isoindoline-dione-isoniazid triads were synthesized and assessed for their anti-mycobacterial activities and cytotoxicity. Most of the synthesized compounds exhibited promising activities against the mc26230 strain of M. tuberculosis with MIC in the range of 5.1-11.9 µM and were non-cytotoxic against Vero cells. The conjugates lacking either isoniazid or quinoline core in their structural framework failed to inhibit the growth of M. tuberculosis; thus, further strengthening the proposed design of triads in the present study.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Matt D Johansen
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France
| | - Françoise Roquet-Banères
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Oluwakemi Ebenezer
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Sumanjit
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
4
|
Santos MSC, Matos AM, Reis M, Martins F. Lipophilicity assessment of some isoniazid derivatives active against Mycobacterium tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Synthesis, biology, computational studies and in vitro controlled release of new isoniazid-based adamantane derivatives. Future Med Chem 2019. [DOI: 10.4155/fmc-2019-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: There is a necessity for new drugs to be more efficient than today's standard due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) Results/methodology: 12 new isoniazid-based adamantane derivatives were synthesized and tested for their antitubercular activity. The pharmacological test results and the aqueous dissolution profile of representative examples of the new molecules are in agreement with the computational results obtained from docking poses and molecular dynamics simulations on the tested compounds. Conclusion: Among their congeners, the adamantane isonicotinoyl hydrazones Ia and Ih exhibit the best antitubercular activity (MIC = 0.04 μg/ml) and the lowest cytotoxicity (selectivity index ≥2500). These results are useful for in future in vivo studies.
Collapse
|
6
|
Rabha A, Singh A, Grover S, Kumari A, Pandey B, Grover A. Structural basis for isoniazid resistance in KatG double mutants of Mycobacterium tuberculosis. Microb Pathog 2019; 129:152-160. [PMID: 30731190 DOI: 10.1016/j.micpath.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
Abstract
The failure of drugs for effective treatment against infectious diseases can be attributed to resistant forms of causative agents. The evasive nature of Mycobacterium tuberculosis is partly associated to its physical features, such as having a thick cell wall and incorporation of beneficial mutations leading to drug resistance. The pro drug Isoniazid (INH) interacts with an enzyme catalase peroxidase to get converted into its active form and upon activation stops the cell wall synthesis thus killing the Mycobacterium. The most common mutation i.e. S315T leads to high degree of drug resistance by virtue of its position in the active site. Here, we have characterized the prominent attributes of two double mutant isolates S315 T/D194G and S315T/M624V which are multi drug resistant and extremely drug resistant, respectively. Protein models were generated using the crystal structure which were then subjected to energy minimization and long term molecular dynamics simulations. Further, computational analysis showed decreasing ability of INH binding to the mutants in order of: Native > S315T/D194G > S315T/M624V. Also, a trend was observed that as the docking score and binding area decreased, there was a significant increase in the distortion of the 3D geometry of the mutants as observed by PCA analysis.
Collapse
Affiliation(s)
- Aneesh Rabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Unissa AN, Doss C GP, Kumar T, Sukumar S, Lakshmi AR, Hanna LE. Significance of catalase-peroxidase (KatG) mutations in mediating isoniazid resistance in clinical strains of Mycobacterium tuberculosis. J Glob Antimicrob Resist 2018; 15:111-120. [PMID: 29990547 DOI: 10.1016/j.jgar.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Isoniazid (INH) is still the most important first-line antitubercular drug. INH resistance is regarded as a major impediment to the tuberculosis (TB) control programme and contributes to the emergence of multidrug-resistant strains. Mutation at position 315 in the katG gene, encoding the catalase-peroxidase (KatG) enzyme, is the major cause of INH resistance in Mycobacterium tuberculosis. Therefore, investigation of the molecular mechanisms of INH resistance is the need of the hour. METHODS To understand the clinical importance of KatG mutants (MTs) leading to INH resistance, in this study five MTs (S315T, S315I, S315R, S315N and S315G) were modelled, docked and interacted with INH in dynamic state. RESULTS The binding affinity based on docking was found to be higher for MTs than for wild-type (WT) isolates, except for MT-S315R, indicating rigid binding of INH with MT proteins compared with the flexible binding seen in the WT. Analysis of molecular dynamics (MD) experiments suggested that fluctuations and deviations were higher at the INH binding residues for MTs than for the WT. Reduction in the hydrogen bond network after MD in all KatG enzymes implies an increase in the flexibility and stability of protein structures. Superimposition of MTs upon the WT structure showed a significant deviation that varies for the different MTs. CONCLUSIONS It can be inferred that the five KatG MTs affect enzyme activity in different ways, which could be attributed to conformational changes in MT KatG that result in altered binding affinity to INH and eventually to INH resistance.
Collapse
Affiliation(s)
- Ameeruddin Nusrath Unissa
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India.
| | - George Priya Doss C
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Thirumal Kumar
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Swathi Sukumar
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India
| | - Appisetty Ramya Lakshmi
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India
| |
Collapse
|
8
|
Karunaratne GHRE, Wijesundera SS, Vidanagama D, Adikaram CP, Perera J. Significance of Coexisting Mutations on Determination of the Degree of Isoniazid Resistance in Mycobacterium tuberculosis Strains. Microb Drug Resist 2018; 24:844-851. [PMID: 29683767 DOI: 10.1089/mdr.2017.0330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The emergence and spread of drug-resistant tuberculosis (TB) pose a threat to TB control in Sri Lanka. Isoniazid (INH) is a key element of the first-line anti-TB treatment regimen. Resistance to INH is mainly associated with point mutations in katG, inhA, and ahpC genes. The objective of this study was to determine mutations of these three genes in INH-resistant Mycobacterium tuberculosis (MTb) strains in Sri Lanka. Complete nucleotide sequence of the three genes was amplified by polymerase chain reaction and subjected to DNA sequencing. Point mutations in the katG gene were identified in 93% isolates, of which the majority (78.6%) were at codon 315. Mutations at codons 212 and 293 of the katG gene have not been reported previously. Novel mutations were recognized in the promoter region of the inhA gene (C deletion at -34), fabG1 gene (codon 27), and ahpC gene (codon 39). Single S315T mutation in the katG gene led to a high level of resistance, while a low level of resistance with high frequency (41%) was observed when katG codon 315 coexisted with the mutation at codon 463. Since most of the observed mutations of all three genes coexisted with the katG315 mutation, screening of katG315 mutations will be a useful marker for molecular detection of INH resistance of MTb in Sri Lanka.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer Perera
- 1 Department of Microbiology, Faculty of Medicine, University of Colombo , Colombo, Sri Lanka
| |
Collapse
|
9
|
Vila-Viçosa D, Victor BL, Ramos J, Machado D, Viveiros M, Switala J, Loewen PC, Leitão R, Martins F, Machuqueiro M. Insights on the Mechanism of Action of INH-C 10 as an Antitubercular Prodrug. Mol Pharm 2017; 14:4597-4605. [PMID: 29091448 DOI: 10.1021/acs.molpharmaceut.7b00719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis remains one of the top causes of death worldwide, and combating its spread has been severely complicated by the emergence of drug-resistance mutations, highlighting the need for more effective drugs. Despite the resistance to isoniazid (INH) arising from mutations in the katG gene encoding the catalase-peroxidase KatG, most notably the S315T mutation, this compound is still one of the most powerful first-line antitubercular drugs, suggesting further pursuit of the development of tailored INH derivatives. The N'-acylated INH derivative with a long alkyl chain (INH-C10) has been shown to be more effective than INH against the S315T variant of Mycobacterium tuberculosis, but the molecular details of this activity enhancement are still unknown. In this work, we show that INH N'-acylation significantly reduces the rate of production of both isonicotinoyl radical and isonicotinyl-NAD by wild type KatG, but not by the S315T variant of KatG mirroring the in vivo effectiveness of the compound. Restrained and unrestrained MD simulations of INH and its derivatives at the water/membrane interface were performed and showed a higher preference of INH-C10 for the lipidic phase combined with a significantly higher membrane permeability rate (27.9 cm s-1), compared with INH-C2 or INH (3.8 and 1.3 cm s-1, respectively). Thus, we propose that INH-C10 is able to exhibit better minimum inhibitory concentration (MIC) values against certain variants because of its better ability to permeate through the lipid membrane, enhancing its availability inside the cell. MIC values of INH and INH-C10 against two additional KatG mutations (S315N and D735A) revealed that some KatG variants are able to process INH faster than INH-C10 into an effective antitubercular form (wt and S315N), while others show similar reaction rates (S315T and D735A). Altogether, our results highlight the potential of increased INH lipophilicity for treating INH-resistant strains.
Collapse
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Bruno L Victor
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , 1349-008 Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , 1349-008 Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , 1349-008 Lisboa, Portugal
| | - Jacek Switala
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruben Leitão
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal.,Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa , R. Conselheiro Emídio Navarro, 1, 1959-007, Lisboa, Portugal
| | - Filomena Martins
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Laborde J, Deraeve C, Bernardes-Génisson V. Update of Antitubercular Prodrugs from a Molecular Perspective: Mechanisms of Action, Bioactivation Pathways, and Associated Resistance. ChemMedChem 2017; 12:1657-1676. [DOI: 10.1002/cmdc.201700424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Laborde
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Céline Deraeve
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Vania Bernardes-Génisson
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| |
Collapse
|
11
|
Srivastava G, Tripathi S, Kumar A, Sharma A. Molecular investigation of active binding site of isoniazid (INH) and insight into resistance mechanism of S315T-MtKatG in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017; 105:18-27. [DOI: 10.1016/j.tube.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022]
|
12
|
Machuqueiro M, Victor B, Switala J, Villanueva J, Rovira C, Fita I, Loewen PC. The Catalase Activity of Catalase-Peroxidases Is Modulated by Changes in the pKa of the Distal Histidine. Biochemistry 2017; 56:2271-2281. [DOI: 10.1021/acs.biochem.6b01276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel Machuqueiro
- Centro de Química
e Bioquímica, Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Bruno Victor
- Centro de Química
e Bioquímica, Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T
2N2, Canada
| | - Jacylyn Villanueva
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T
2N2, Canada
| | - Carme Rovira
- Departament de Química
Organica and Institut de Química Teòrica i Computacional
(IQTCUB), Universtat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ignacio Fita
- Institut de Biología
Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri
i Reixac 10-12, 08028 Barcelona, Spain
| | - Peter C. Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T
2N2, Canada
| |
Collapse
|