1
|
Al Hashami ZS, van der Vegt B, Mourits MJ, Kluiver J, van den Berg A. miRNA-dependent resistance mechanisms to anti-hormonal therapies in estrogen receptor-positive breast cancer patients. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200941. [PMID: 40190354 PMCID: PMC11969448 DOI: 10.1016/j.omton.2025.200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The estrogen receptor (ERα) is expressed in 70%-80% of breast cancers and is a target of endocrine therapy. However, resistance to endocrine therapy poses a significant clinical challenge. MicroRNAs (miRNAs) have emerged as critical players in oncogenesis and as modulators of therapy response. This review provides an overview of miRNAs that modulate anti-hormonal drug responses. We identified 56 miRNAs associated with resistance to endocrine therapy. These miRNAs had a total of 40 proven target genes that were grouped based on their function under currently known resistance mechanisms, including ER modulation, signaling pathway activation, cell-cycle modulation, and other mechanisms. For a limited number of miRNA-target gene interactions, the relevance of the identified target gene(s) was confirmed by copy or rescue of the miRNA-induced phenotype. Overall, this review highlights critical roles of miRNAs as crucial mediators of resistance to anti-hormonal therapy. The identified miRNA-target gene interactions can serve as a foundation for future functional studies exploring the potential of selected miRNAs in overcoming drug resistance, which might improve outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Zainab Salam Al Hashami
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Marian J.E. Mourits
- Department of Gynaecological Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, Groningen, the Netherlands
- University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
3
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
4
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
6
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
7
|
Lobo CL, Shetty A, M M, Dubey A, El-Zahaby SA. Non-systemic Approaches for Ductal Carcinoma In Situ: Exploring the Potential of Ultra-flexible Combisomes as a Novel Drug Delivery Strategy-a Review. AAPS PharmSciTech 2023; 24:119. [PMID: 37173545 DOI: 10.1208/s12249-023-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is currently treated through breast-conserving surgery (lumpectomy), radiation therapy, breast-removing surgery (mastectomy), and hormone therapy to prevent further progression into invasive breast cancer and recurrence. Discrepancies concerning the prognosis of DCIS have sparked controversy about adequate treatment. Considering the severe medical and psychological consequences of mastectomy, developing a treatment approach that arrests the progression of DCIS to the invasive stage without affecting the non-cancerous cells is of utmost importance. In the current review, the problems associated with the diagnosis and management of DCIS have been thoroughly discussed. A summary of the route of administration and drug delivery systems to manage DCIS was also provoked. Innovative ultra-flexible combisomes were also proposed for the effective management of DCIS. Prevention is essential in managing the risk of DCIS and reducing the risk of progression to invasive breast cancer. While prevention is vital, it is not always possible to prevent DCIS, and in some cases, treatment may be necessary. Hence, this review recommends that ultra-flexible combisomes administered as a topical gel provide a non-systemic approach for managing DCIS and thus significantly minimize the side effects and costs associated with existing therapies.
Collapse
Affiliation(s)
- Cynthia Lizzie Lobo
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India
| | - Manohar M
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India.
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, South Sinai, Egypt
| |
Collapse
|
8
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Liu Y, Sukumar UK, Jugniot N, Seetharam SM, Rengaramachandran A, Sadeghipour N, Mukherjee P, Krishnan A, Massoud TF, Paulmurugan R. Inhaled Gold Nano-star Carriers for Targeted Delivery of Triple Suicide Gene Therapy and Therapeutic MicroRNAs to Lung Metastases: Development and Validation in a Small Animal Model. ADVANCED THERAPEUTICS 2022; 5:2200018. [PMID: 36212523 PMCID: PMC9543365 DOI: 10.1002/adtp.202200018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary metastases pose significant treatment challenges for many cancers, including triple-negative breast cancer (TNBC). We developed and tested a novel suicide gene and therapeutic microRNAs (miRs) combination therapy against lung metastases in vivo in mouse models after intranasal delivery using nontoxic gold nanoparticles (AuNPs) formulated to carry these molecular therapeutics. We used AuNPs coated with chitosan-β-cyclodextrin (CS-CD) and functionalized with a urokinase plasminogen activator (uPA) peptide to carry triple cancer suicide genes (thymidine kinase-p53-nitroreductase: TK-p53-NTR) plus therapeutic miRNAs (antimiR-21, antimiR-10b and miR-100). We synthesized three AuNPs: 20nm nanodots (AuND), and 20nm or 50nm nanostars (AuNS), then surface coated these with CS-CD using a microfluidic-optimized method. We sequentially coated the resulting positively charged AuNP-CS-CD core with synthetic miRNAs followed by TK-p53-NTR via electrostatic interactions, and added uPA peptide through CD-adamantane host-guest chemistry. A comparison of transfection efficiencies for different AuNPs showed that the 50nm AuNS allowed ∼4.16-fold higher gene transfection than other NPs. The intranasal delivery of uPA-AuNS-TK-p53-NTR-microRNAs NPs (pAuNS@TK-p53-NTR-miRs) in mice predominantly accumulated in lungs and facilitated ganciclovir and CB1954 prodrug-mediated gene therapy against TNBC lung metastases. This new nanosystem may serve as an adaptable-across-cancer-type, facile, and clinically scalable platform to allow future inhalational suicide gene-miR combination therapy for patients harboring pulmonary metastases.
Collapse
Affiliation(s)
- Yi Liu
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Uday Kumar Sukumar
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Natacha Jugniot
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | | | - Adith Rengaramachandran
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Negar Sadeghipour
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | | | - Anandi Krishnan
- Department of Pathology, School of Medicine, Stanford University, CA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, CA
| |
Collapse
|
10
|
Holjencin C, Jakymiw A. MicroRNAs and Their Big Therapeutic Impacts: Delivery Strategies for Cancer Intervention. Cells 2022; 11:cells11152332. [PMID: 35954176 PMCID: PMC9367537 DOI: 10.3390/cells11152332] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Three decades have passed from the initial discovery of a microRNA (miRNA) in Caenorhabditis elegans to our current understanding that miRNAs play essential roles in regulating fundamental physiological processes and that their dysregulation can lead to many human pathologies, including cancer. In effect, restoration of miRNA expression or downregulation of aberrantly expressed miRNAs using miRNA mimics or anti-miRNA inhibitors (anti-miRs/antimiRs), respectively, continues to show therapeutic potential for the treatment of cancer. Although the manipulation of miRNA expression presents a promising therapeutic strategy for cancer treatment, it is predominantly reliant on nucleic acid-based molecules for their application, which introduces an array of hurdles, with respect to in vivo delivery. Because naked nucleic acids are quickly degraded and/or removed from the body, they require delivery vectors that can help overcome the many barriers presented upon their administration into the bloodstream. As such, in this review, we discuss the strengths and weaknesses of the current state-of-the-art delivery systems, encompassing viral- and nonviral-based systems, with a specific focus on nonviral nanotechnology-based miRNA delivery platforms, including lipid-, polymer-, inorganic-, and extracellular vesicle-based delivery strategies. Moreover, we also shed light on peptide carriers as an emerging technology that shows great promise in being a highly efficacious delivery platform for miRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Charles Holjencin
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
| | - Andrew Jakymiw
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
- Department of Biochemistry & Molecular Biology, College of Medicine, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
- Correspondence: ; Tel.: +1-843-792-2551
| |
Collapse
|
11
|
Bose RJC, Kumar US, Garcia-Marques F, Zeng Y, Habte F, McCarthy JR, Pitteri S, Massoud TF, Paulmurugan R. Engineered Cell-Derived Vesicles Displaying Targeting Peptide and Functionalized with Nanocarriers for Therapeutic microRNA Delivery to Triple-Negative Breast Cancer in Mice. Adv Healthc Mater 2022; 11:e2101387. [PMID: 34879180 PMCID: PMC8891081 DOI: 10.1002/adhm.202101387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/28/2021] [Indexed: 11/05/2022]
Abstract
Polymeric nanocarriers (PNCs) can be used to deliver therapeutic microRNAs (miRNAs) to solid cancers. However, the ability of these nanocarriers to specifically target tumors remains a challenge. Alternatively, extracellular vesicles (EVs) derived from tumor cells show homotypic affinity to parent cells, but loading sufficient amounts of miRNAs into EVs is difficult. Here, it is investigated whether uPAR-targeted delivery of nanococktails containing PNCs loaded with therapeutic antimiRNAs, and coated with uPA engineered extracellular vesicles (uPA-eEVs) can elicit synergistic antitumor responses. The uPA-eEVs coating on PNCs increases natural tumor targeting affinities, thereby enhancing the antitumor activity of antimiRNA nanococktails. The systemic administration of uPA-eEV-PNCs nanococktail shows a robust tumor tropism, which significantly enhances the combinational antitumor effects of antimiRNA-21 and antimiRNA-10b, and leads to significant tumor regression and extension of progression free survival for syngeneic 4T1 tumor-bearing mice. In addition, the uPA-eEV-PNCs-antimiRNAs nanococktail plus low dose doxorubicin results in a synergistic antitumor effect as evidenced by inhibition of tumor growth, reduction of lung metastases, and extension of survival of 4T1 tumor-bearing mice. The targeted combinational nanococktail strategy could be readily translated to the clinical setting by using autologous cancer cells that have flexibility for ex vivo expansion and genetic engineering.
Collapse
Affiliation(s)
- Rajendran JC Bose
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, California - 94305-5427 USA,Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, California - 94305-5427 USA
| | - Uday Sukumar Kumar
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, California - 94305-5427 USA,Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, California - 94305-5427 USA
| | - Fernando Garcia-Marques
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, California - 94305-5427 USA
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-4034, USA
| | - Frezghi Habte
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, California - 94305-5427 USA,Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, California - 94305-5427 USA
| | - Jason R McCarthy
- Biomedical and Translational Medicine, Masonic Medical Research Institute, Utica, USA
| | - Sharon Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, California - 94305-5427 USA
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, California - 94305-5427 USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, California - 94305-5427 USA,Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, California - 94305-5427 USA
| |
Collapse
|
12
|
Shang M, Wu Y, Wang Y, Cai Y, Jin J, Yang Z. Dual antisense oligonucleotide targeting miR-21/miR-155 synergize photodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. Biomed Pharmacother 2022; 146:112564. [PMID: 34954643 DOI: 10.1016/j.biopha.2021.112564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a greatly aggressive subtype of breast cancer with high recurrence and mortality rates. Chemotherapy as a primary treatment for cancer is limited due to toxic side effects and drug resistance. Therefore, low toxicity and more effective breast cancer therapeutic approaches are greatly desired. In this study, a strategy which using ZIF-90 nanoparticles co-deliver Ce6-anti-miR-21 and Ce6-anti-miR-155 into the tumor cells was developed. Due to the pH responsive drug release of ZIF-90, antisense oligonucleotides (anti-miRNAs) and photosensitizers are able to be efficiently released inside tumor microenvironment. The nano delivery system captures overexpressed oncogenic miRNAs while the photosensitizer Ce6 generates ROS under light irradiation to effectively induce the apoptosis of tumor cell. This combinatorial effect was verified by results showing that the purposed therapic method could effectively inhibit tumor cell proliferation and metastasis. The concept of antisense oligonucleotide combined with photodynamic therapy has great potential in cancer treatment or adjuvant therapy.
Collapse
Affiliation(s)
- Mengdi Shang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yiyang Wu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yeyang Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Sharma S, Pukale S, Sahel DK, Singh P, Mittal A, Chitkara D. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112305. [PMID: 34474856 DOI: 10.1016/j.msec.2021.112305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
In spite of established evidence of the synergistic combination of hydrophobic anticancer molecule and microRNA for breast cancer treatment, their in vivo delivery has not been realized owing to their instability in the biological milieu and varied physicochemical properties. The present work reports folate targeted hybrid lipo-polymeric nanoplexes for co-delivering DTX and miR-34a. These nanoplexes exhibited a mean size of 129.3 nm with complexation efficiency at an 8:1 N/P ratio. The obtained nanoplexes demonstrated higher entrapment efficiency of DTX (94.8%) with a sustained release profile up to 85% till 48 h. Further, an improved transfection efficiency in MDA-MB-231 and 4T1 breast cancer cells was observed with uptake primarily through lipid-raft and clathrin-mediated endocytosis. Further, nanoplexes showed improved cytotoxicity (~3.5-5 folds), apoptosis (~1.6-2.0 folds), and change in expression of apoptotic genes (~4-7 folds) compared to the free treatment group in breast cancer cells. In vivo systemic administration of FA-functionalized DTX and FAM-siRNA-loaded nanoplexes showed an improved area under the curve (AUC) as well as circulation half-life compared to free DTX and naked FAM-labelled siRNA. Acute toxicity studies of the cationic polymer showed no toxicity at a dose equivalent to 10 mg/kg based on the hematological, biochemical, and histopathological examination.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India; School of Health Sciences, Department of Pharmaceutical Sciences, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Sudeep Pukale
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
14
|
Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21. Carbohydr Polym 2021; 266:118111. [PMID: 34044928 DOI: 10.1016/j.carbpol.2021.118111] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Herein, a novel targeted delivery system was developed for intracellular co-delivery of doxorubicin (DOX) as a chemotherapeutic drug, antimiR-21 as an oncogenic antagomiR. In this system, DOX was loaded into mesoporous silica nanoparticles (MSNs) and chitosan was applied to cover the surface of MSNs. AS1411 aptamer as targeting nucleolin and antimiR-21 were electrostatically attached onto the surface of the chitosan-coated MSNs and formed the final nanocomplex (AACS nanocomplex). The study of drug release was based on DOX release under pH 7.4 and 5.5. Cellular toxicity and cellular uptake assessments of AACS nanocomplex were carried out in nucleolin positive (C26, MCF-7, and 4T1) and nucleolin negative (CHO) cell lines using MTT assay and flow cytometry analysis, respectively. Also, Anti-tumor efficacy of AACS nanocomplex was evaluated in C26 tumor-bearing mice. Overall, the results show that the combination therapy of DOX and antimiR-21, using AACS nanocomplex, could combat the cancer cell growth rate.
Collapse
|
15
|
Arghiani N, Matin MM. miR-21: A Key Small Molecule with Great Effects in Combination Cancer Therapy. Nucleic Acid Ther 2021; 31:271-283. [PMID: 33891511 DOI: 10.1089/nat.2020.0914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of various cancers indicates the urgent need for finding accurate early diagnostic markers and more effective treatments for these malignancies. MicroRNAs (miRNAs) are small noncoding RNAs with great potentials to enter into cancer clinics as both diagnostic markers and therapeutic targets. miR-21 is elevated in many cancers, and promotes cell proliferation, metastasis, and drug resistance. In recent years, many studies have shown that targeting miR-21 combined with conventional chemotherapeutic agents could enhance their therapeutic efficacy, and overcome drug resistance and cancer recurrence both in vitro and in animal models. In this review, we first summarize the effects and importance of miR-21 in various cancers, and explore its function in drug resistance of cancer cells. Next, the challenges and prospects for clinical translation of anti-miR-21, as a therapeutic agent, will be discussed in combination cancer therapy.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Sameiyan E, Bagheri E, Dehghani S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater 2021; 123:110-122. [PMID: 33453405 DOI: 10.1016/j.actbio.2020.12.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving "on-demand" therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticles, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.
Collapse
|
17
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
18
|
Singh M, Zhou X, Chen X, Santos GS, Peuget S, Cheng Q, Rihani A, Arnér ESJ, Hartman J, Selivanova G. Identification and targeting of selective vulnerability rendered by tamoxifen resistance. Breast Cancer Res 2020; 22:80. [PMID: 32727562 PMCID: PMC7388523 DOI: 10.1186/s13058-020-01315-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.
Collapse
Affiliation(s)
- Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Xiaolei Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden
| | - Gema Sanz Santos
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ali Rihani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden.
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
19
|
Abnous K, Danesh NM, Ramezani M, Alibolandi M, Bahreyni A, Lavaee P, Moosavian SA, Taghdisi SM. A smart ATP-responsive chemotherapy drug-free delivery system using a DNA nanostructure for synergistic treatment of breast cancer in vitro and in vivo. J Drug Target 2020; 28:852-859. [PMID: 31916879 DOI: 10.1080/1061186x.2020.1712407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study demonstrated a chemotherapy drug-free delivery system for breast cancer treatment based on a simple DNA nanostructure composed of sequence 1 containing ATP and AS1411 aptamers and sequence 2 containing antimiR-21. The DNA nanostructure was used for co-delivery of KLA peptide and antimiR-21 as antiapoptotic agents. These therapeutic agents could not be internalised into eukaryotic cells freely which is one of the great features of this targeting platform. The presented delivery system was ATP-responsive, leading to disassembly of the DNA nanostructure in high ATP concentration of cancer cells and restoration of the function of antimiR-21 in these cells. The DNA nanostructure was associated with high cellular uptake by MCF-7 and 4T1 cells due to expression of nucleolin as target of AS1411 on their plasma membranes, while the developed targeting platform could not be internalised into CHO cells because of lack of the active targeting moiety on their surfaces. Furthermore, the results showed that co-delivery of antimiR-21 and KLA peptide using the DNA nanostructure could efficiently prohibit tumour growth in vitro and in vivo and induce a synergistic anticancer activity. Thus, this work provides a new ATP-responsive nanotargeting delivery system and synergistic chemotherapy drug-free regimen for cancer treatment.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research, Research Institute for Industrial Biotechnology, Industrial Biotechnology on Microorganisms, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Antisense LNA-loaded nanoparticles of star-shaped glucose-core PCL-PEG copolymer for enhanced inhibition of oncomiR-214 and nucleolin-mediated therapy of cisplatin-resistant ovarian cancer cells. Int J Pharm 2020; 573:118729. [PMID: 31705975 DOI: 10.1016/j.ijpharm.2019.118729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
We aimed to inhibit overexpressed oncomiR-214 in cisplatin (CIS)-resistant ovarian cancer (OC) and perform targeted therapy of sensitized cells using a novel polymeric drug delivery system (DDS). A system of nanoparticles (NPs) of star-shaped glucose-core polycaprolactone-polyethylene glycol (Glu-PCL-PEG) block copolymer containing cisplatin (CIS-PCL NPs) and locked nucleic acid (LNA) anti-miR-214 (LNA-PCL NPs) were prepared and anti-nucleolin aptamer was conjugated to the surface of prepared NPs to prepare Ap-CIS-PCL NPs and Ap-LNA-PCL NPs, respectively. The cancer-targeting ability of the NPs was confirmed and the CIS-resistant A2780 (A2780 R) cells were transfected with Ap-LNA-PCL NPs to inhibit oncomiR-214 and sensitize the cells to CIS. Next, the miR-214-inhibited cells were exposed to the Ap-CIS-NPs and the deracination efficiency of targeted DDS was evaluated. The oncomiR-214 in A2780 R cells were harnessed by Ap-LNA-PCL NPs, and nucleolin-mediated endocytosis of targeted polymeric DDSs containing CIS into miR-214-inhibited A2780 R cells caused enhanced apoptosis, which was further confirmed by apoptosis detection and evaluation of downstream genes expression. Targeted inhibition of miR-214 using the developed NPs containing LNA can decrease drug-resistant properties of cancer cells and may enhance the efficiency of targeted DDSs.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Ban E, Kwon TH, Kim A. Delivery of therapeutic miRNA using polymer-based formulation. Drug Deliv Transl Res 2019; 9:1043-1056. [DOI: 10.1007/s13346-019-00645-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Janković N, Trifunović Ristovski J, Vraneš M, Tot A, Petronijević J, Joksimović N, Stanojković T, Đorđić Crnogorac M, Petrović N, Boljević I, Matić IZ, Bogdanović GA, Mikov M, Bugarčić Z. Discovery of the Biginelli hybrids as novel caspase-9 activators in apoptotic machines: Lipophilicity, molecular docking study, influence on angiogenesis gene and miR-21 expression levels. Bioorg Chem 2019; 86:569-582. [DOI: 10.1016/j.bioorg.2019.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/03/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
23
|
Zhu Y, Tang H, Zhang L, Gong L, Wu G, Ni J, Tang X. Suppression of miR-21-3p enhances TRAIL-mediated apoptosis in liver cancer stem cells by suppressing the PI3K/Akt/Bad cascade via regulating PTEN. Cancer Manag Res 2019; 11:955-968. [PMID: 30774424 PMCID: PMC6349085 DOI: 10.2147/cmar.s183328] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background TNF-related apoptosis-inducing ligand (TRAIL) functions as a selective apoptosis-inducing ligand in cancer cells with normal cells remaining unaffected; however, resistance limits its anticancer properties. Cancer stem cells (CSCs) are involved in the treatment of resistant cancer cases including liver cancer (LC). The aim of this study was to look into the approaches for increasing the sensitivity of liver cancer stem cells (LCSCs) toward TRAIL. Methodology PLC, HepG2 and Huh7 LC cell lines were used in this study. Quantitative reverse transcription PCR (qRT-PCR) analysis was done for evaluating the expression of miR-21-3b. Fluorescent-activated cell-sorting equipment was used for separation and identification of LCSCs and non-LCSCs. The cells were transfected with RNA along with miR-21-3p mimics, anti- miR-21-3p, miR-NC and the phosphatase and tensin homologue (PTEN) siRNA. MTT assay for cell viability, Luciferase assay for luciferase activity, Western blots for the expression of proteins and flow cytometry for the measurement of ROS and apoptosis, respectively, were carried out. Tumor xenografts nude mice were used for tumor growth in vivo. Results We found that miR-21-3p was overexpressed in LCSCs compared to non-LCSCs and that the suppression of miR-21-3p along with anti-miR-21-3p enhanced the sensitivity of LCSCs to TRAIL-mediated apoptosis. We further found that miR-21-3p regulated the expression of PTEN in Huh7-LCSCs directly and that the suppression of miR-21-3p enhanced the levels of PTEN. The study confirmed that inhibition of the PI3K/Akt/Bad signaling pathway was involved in enhancing TRAIL-mediated apoptosis of LC cells. Conclusion The study suggested that overexpression of miR-21-3p suppresses the sensitivity to TRAIL in LCSCs. This study concludes that the suppression of miR-21-3p is a potential approach for enhancing the sensitivity of LC cells toward TRAIL by PI3K/Akt/Bad cascade via the miR-21-3p/PTEN axis.
Collapse
Affiliation(s)
- Yingwei Zhu
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Hong Tang
- Department of Pathology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China
| | - Lili Zhang
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Lei Gong
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Gaojue Wu
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Jingbin Ni
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| | - Xuejun Tang
- Department of Gastroenterology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China,
| |
Collapse
|
24
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|
25
|
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-Delivery Nanosystems for Cancer Treatment: A Review. Pharm Nanotechnol 2019; 7:90-112. [PMID: 30907329 DOI: 10.2174/2211738507666190321112237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Massive data available on cancer therapy more than ever lead our mind to the general concept that there is no perfect treatment for cancer. Indeed, the biological complexity of this disease is too excessive to be treated by a single therapeutic approach. Current delivery systems containing a specific drug or gene have their particular opportunities and restrictions. It is worth noting that a considerable number of studies suggest that single- drug delivery systems result in insufficient suppression of cancer growth. Therefore, one of the main ideas of co-delivery system designing is to enhance the intended response or to achieve the synergistic/combined effect compared to the single drug strategy. This review focuses on various strategies for co-delivery of therapeutic agents in the treatment of cancer. The primary approaches within the script are categorized into co-delivery of conventional chemotherapeutics, gene-based molecules, and plant-derived materials. Each one is explained in examples with the recent researches. In the end, a brief summary is provided to conclude the gist of the review.
Collapse
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zamzami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Vandghanooni S, Eskandani M, Barar J, Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine (Lond) 2018; 13:2729-2758. [PMID: 30394201 DOI: 10.2217/nnm-2018-0205] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM The overexpression of miRNA-21 correlates with the cisplatin (CIS) resistance in the ovarian cancers. METHODS AS1411 antinucleolin aptamer-decorated PEGylated poly(lactic-co-glycolic acid) nanoparticles containing CIS (Ap-CIS-NPs) and anti-miR-21 (Ap-anti-miR-21-NPs) were prepared, physicochemically investigated and their cancer-targeting ability was confirmed. CIS-resistant A2780 cells (A2780 R) were infected with anti-miR-21 using Ap-anti-miR-21-NPs to decrease the drug resistance and sensitize the cells to CIS. Afterward, miR-21-inhibited cells were exposed to the Ap-CIS-NPs. RESULTS Ap-anti-miR-21-NPs could infect the A2780 R cells mainly through nucleolin-mediated endocytosis and inhibit the endogenous miR-21. Targeted delivery of CIS using Ap-CIS-NPs into the miR-21-inhibited cells caused an enhanced mortality. CONCLUSION The targeted delivery of chemotherapeutics to the oncomiR-inhibited cells may find a robust application in cancer chemo/gene therapy.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
28
|
Paulmurugan R, Ajayan PM, Liepmann D, Renugopalakrishnan V. Intracellular MicroRNA Quantification in Intact Cells: A Novel Strategy based on Reduced Graphene Oxide Based Fluorescence Quenching. MRS COMMUNICATIONS 2018; 8:642-651. [PMID: 30705781 PMCID: PMC6349379 DOI: 10.1557/mrc.2018.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Nanomaterials have been proposed as key components in biosensing, imaging, and drug-delivery since they offer distinctive advantages over conventional approaches. The unique chemical and physical properties of graphene make it possible to functionalize and develop protein transducers, therapeutic delivery vehicles, and microbial diagnostics. In this study we evaluate reduced graphene oxide (rGO) as a potential nanomaterial for quantification of microRNAs including their structural differentiation in vitro in solution and inside intact cells. Our results provide evidence for the potential use of graphene nanomaterials as a platform for developing devices that can be used for microRNA quantitation as biomarkers for clinical applications.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Dept. of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, CA 94304
| | - Pulickel M. Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, CA
| | - V. Renugopalakrishnan
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018; 13:1051-1066. [PMID: 29790803 PMCID: PMC6219432 DOI: 10.2217/nnm-2017-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
AIM Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype. Since no targeted therapy is available, gene-directed enzyme prodrug therapy (GDEPT) could be an attractive strategy for treating TNBC. MATERIALS & METHODS Polyethylene glycol (PEG)ylated-poly(lactic-co-glycolic acid)/polyethyleneimine nanoparticles (PLGA/PEI NPs) were synthesized and complexed with TK-NTR fusion gene. Ultrasound (US) and microbubble (MB) mediated sonoporation was used for efficient delivery of the TK-NTR-DNA-NP complex to TNBC tumor in vivo for cancer therapy. Therapeutic effect was evaluated by treating TNBC cells in vitro and tumor xenograft in vivo by using prodrugs ganciclovir (GCV) and CB1954. RESULTS TNBC cells treated with GCV/CB1954 prodrugs after transfection of TK-NTR-DNA by PEGylated-PLGA/PEI NP resulted in high apoptotic-index. US-MB image-guided delivery of TK-NTR-DNA-NP complex displayed significant expression level of TK-NTR protein and showed tumor reduction when treated with GCV/CB1954 prodrugs in TNBC xenograft in vivo. CONCLUSION US-MB image-guided delivery of TK-NTR gene by PEGylated-PLGA/PEI NPs could be a potential prodrug therapy for TNBC in the clinic.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Thillai V Sekar
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Kira Foygel
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
30
|
Labatut AE, Mattheolabakis G. Non-viral based miR delivery and recent developments. Eur J Pharm Biopharm 2018; 128:82-90. [PMID: 29679644 DOI: 10.1016/j.ejpb.2018.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
miRNAs are promising therapeutic targets or tools for the treatment of numerous diseases, with most prominently, cancer. The inherent capacity of these short nucleic acids to regulate multiple cancer-related pathways simultaneously has prompted strong research on understanding miR functions and their potential use for therapeutic purposes. A key determinant of miR therapeutics' potential for treatment is their delivery. Viral and non-viral vectors attempt to address the major limitations associated with miR delivery, but several hurdles have been identified. Here, we present an overview on the general limitations of miR delivery, and the delivery strategies exploited to overcome them. We provide an introduction on the advantages and disadvantages of viral and non-viral vectors, and we go into detail to analyze the most prominently used non-viral systems. We provide with an update on the most recent research on this topic and we describe the mechanism and limitations of the lipid-, polymer- and inorganic material- based miR delivery systems.
Collapse
Affiliation(s)
- Annalise Elizabeth Labatut
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States
| | - George Mattheolabakis
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States.
| |
Collapse
|
31
|
Petrovic N, Ergun S. miRNAs as Potential Treatment Targets and Treatment Options in Cancer. Mol Diagn Ther 2018; 22:157-168. [DOI: 10.1007/s40291-017-0314-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Báez-Vega PM, Echevarría Vargas IM, Valiyeva F, Encarnación-Rosado J, Roman A, Flores J, Marcos-Martínez MJ, Vivas-Mejía PE. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget 2017; 7:36321-36337. [PMID: 27166999 PMCID: PMC5095003 DOI: 10.18632/oncotarget.9216] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR. Colony formation and invasion assays were carried out on ovarian and prostate cancer cells transfected with miR-21-5p and miR-21-3p inhibitors. Dual luciferase reporter assays were used to identify the miR-21-3p target genes in ovarian cancer cells. Our results show that miR-21-5p had higher expression levels compared to miR-21-3p on a panel of cancer cells. Moreover, inhibition of miR-21-5p or miR-21-3p resulted in a significant decrease in ovarian and prostate cancer cell proliferation and invasion. Luciferase reporter assays identify RNA Binding Protein with Multiple Splicing (RBPMS), Regulator of Chromosome Condensation and POZ Domain Containing Protein 1 (RCBTB1), and Zinc Finger protein 608 (ZNF608) as miR-21-3p target genes. SiRNA-induced RBPMS silencing reduced the sensitivity of ovarian cancer cells to cisplatin treatment. Immunohistochemical analyses of serous ovarian cancer patient samples suggest a significant decrease of RBMPS levels when compared to normal ovarian epithelium. Taken together, the data generated in this study suggests a functional role for miR-21-3p in ovarian cancer and other solid tumors.
Collapse
Affiliation(s)
- Perla M Báez-Vega
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Ileabett M Echevarría Vargas
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.,Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Adriana Roman
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Josean Flores
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - María J Marcos-Martínez
- Department of Pathology and Laboratory Medicine-University of Puerto Rico-School of Medicine, San Juan, Puerto Rico.,Puerto Rico Medical Services Administration, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.,Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
33
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Callesen MM, Árnadóttir SS, Lyskjaer I, Ørntoft MBW, Høyer S, Dagnaes-Hansen F, Liu Y, Li R, Callesen H, Rasmussen MH, Berthelsen MF, Thomsen MK, Schweiger PJ, Jensen KB, Laurberg S, Ørntoft TF, Elverløv-Jakobsen JE, Andersen CL. A genetically inducible porcine model of intestinal cancer. Mol Oncol 2017; 11:1616-1629. [PMID: 28881081 PMCID: PMC5664002 DOI: 10.1002/1878-0261.12136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Transgenic porcine cancer models bring novel possibilities for research. Their physical similarities with humans enable the use of surgical procedures and treatment approaches used for patients, which facilitates clinical translation. Here, we aimed to develop an inducible oncopig model of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase‐inducible oncogene cassette containing KRAS‐G12D, cMYC, SV40LT – which inhibits p53 – and pRB and (b) a 4‐hydroxytamoxifen (4‐OHT)‐inducible Flp recombinase activator cassette controlled by the intestinal epithelium‐specific villin promoter. Thirteen viable transgenic minipigs were born. The ability of 4‐OHT to activate the oncogene cassette was confirmed in vitro in TG colonic organoids and ex vivo in tissue biopsies obtained by colonoscopy. In order to provide proof of principle that the oncogene cassette could also successfully be activated in vivo, three pigs were perorally treated with 400 mg tamoxifen for 2 × 5 days. After two months, one pig developed a duodenal neuroendocrine carcinoma with a lymph node metastasis. Molecular analysis of the carcinoma and metastasis confirmed activation of the oncogene cassette. No tumor formation was observed in untreated TG pigs or in the remaining two treated pigs. The latter indicates that tamoxifen delivery can probably be improved. In summary, we have generated a novel inducible oncopig model of intestinal cancer, which has the ability to form metastatic disease already two months after induction. The model may be helpful in bridging the gap between basic research and clinical usage. It opens new venues for longitudinal studies of tumor development and evolution, for preclinical assessment of new anticancer regimens, for pharmacology and toxicology assessments, as well as for studies into biological mechanisms of tumor formation and metastasis.
Collapse
Affiliation(s)
- Morten M Callesen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Iben Lyskjaer
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Søren Høyer
- Department of Pathology, Aarhus University Hospital, Denmark
| | | | - Ying Liu
- Department of Animal Science, Aarhus University, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Denmark
| | | | - Mads H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | | | - Pawel J Schweiger
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Søren Laurberg
- Surgical Department P, Aarhus University Hospital, Denmark
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
35
|
Bottai G, Truffi M, Corsi F, Santarpia L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin Biol Ther 2017; 17:595-611. [DOI: 10.1080/14712598.2017.1305351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Giulia Bottai
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| | - Marta Truffi
- Laboratory of Nanomedicine, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milano, Italy
| | - Fabio Corsi
- Laboratory of Nanomedicine, Surgery Division, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milan, Italy
| | - Libero Santarpia
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| |
Collapse
|
36
|
Fernandez-Piñeiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv 2017; 35:350-360. [PMID: 28286148 DOI: 10.1016/j.biotechadv.2017.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023]
Abstract
The number of deaths caused by cancer is expected to increase partly due to the lack of selectivity and undesirable systemic effects of current treatments. Advances in the understanding of microRNA (miRNA) functions and the ideal properties of nanosystems have brought increasing attention to the application of nanomedicine to cancer therapy. This review covers the different miRNA therapeutic strategies and delivery challenges for its application in cancer medicine. Current trends in inorganic, polymeric and lipid nanocarrier development for miRNA replacement or inhibition are summarized. To achieve clinical success, in-depth knowledge of the effects of the promotion or inhibition of specific miRNAs is required. To establish the dose and the length of treatment, it will be necessary to study the duration of gene silencing. Additionally, efforts should be made to develop specifically targeted delivery systems to cancer cells to reduce doses and unwanted effects. In the near future, the combination of miRNAs with other therapeutic approaches is likely to play an important role in addressing the heterogeneity of cancer.
Collapse
Affiliation(s)
- I Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain
| | - I Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Odontology, University of Basque Country, B° Sarriena, s/n, 48940 Leioa, Spain
| | - A Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
37
|
Xie Z, Zeng X. DNA/RNA-based formulations for treatment of breast cancer. Expert Opin Drug Deliv 2017; 14:1379-1393. [DOI: 10.1080/17425247.2017.1317744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhaolu Xie
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xianghui Zeng
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Rui M, Qu Y, Gao T, Ge Y, Feng C, Xu X. Simultaneous delivery of anti-miR21 with doxorubicin prodrug by mimetic lipoprotein nanoparticles for synergistic effect against drug resistance in cancer cells. Int J Nanomedicine 2016; 12:217-237. [PMID: 28115844 PMCID: PMC5221799 DOI: 10.2147/ijn.s122171] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance in cancer cells is one of the major obstacles to achieving effective chemotherapy. We hypothesized that the combination of a doxorubicin (Dox) prodrug and microRNA (miR)21 inhibitor might show synergistic antitumor effects on drug-resistant breast cancer cells. In this study, we aimed to develop new high-density lipoprotein-mimicking nanoparticles (HMNs) for coencapsulation and codelivery of this potential combination. Dox was coupled with a nuclear localization signal (NLS) peptide to construct a prodrug (NLS-Dox), thereby electrostatically condensing miR21 inhibitor (anti-miR21) to form cationic complexes. The HMNs were formulated by shielding these complexes with anionic lipids and Apo AI proteins. We have characterized that the coloaded HMNs had uniformly dispersed distribution, favorable negatively charged surface, and high coencapsulation efficiency. The HMN formulation effectively codelivered NLS-Dox and anti-miR21 into Dox-resistant breast cancer MCF7/ADR cells and wild-type MCF7 cells via a high-density-lipoprotein receptor-mediated pathway, which facilitated the escape of Pgp drug efflux. The coloaded HMNs consisting of NLS-Dox/anti-miR21 demonstrated greater cytotoxicity with enhanced intracellular accumulation in resistant MCF7/ADR cells compared with free Dox solution. The reversal of drug resistance by coloaded HMNs might be attributed to the suppression of miR21 expression and the related antiapoptosis network. Furthermore, the codelivery of anti-miR21 and NLS-Dox by HMNs showed synergistic antiproliferative effects in MCF7/ADR-bearing nude mice, and was more effective in tumor inhibition than other drug formulations. These data suggested that codelivery of anti-miR21 and chemotherapeutic agents by HMNs might be a promising strategy for antitumor therapy, and could restore the drug sensitivity of cancer cells, alter intracellular drug distribution, and ultimately enhance chemotherapeutic effects.
Collapse
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yang Qu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tong Gao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yanru Ge
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
39
|
Rui M, Xin Y, Li R, Ge Y, Feng C, Xu X. Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Mol Pharm 2016; 14:107-123. [DOI: 10.1021/acs.molpharmaceut.6b00732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuanrong Xin
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ran Li
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yanru Ge
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
40
|
Devulapally R, Foygel K, Sekar TV, Willmann JK, Paulmurugan R. Gemcitabine and Antisense-microRNA Co-encapsulated PLGA-PEG Polymer Nanoparticles for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33412-33422. [PMID: 27960411 PMCID: PMC5206908 DOI: 10.1021/acsami.6b08153] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is highly prevalent, and the third most common cause of cancer-associated deaths worldwide. HCC tumors respond poorly to chemotherapeutic anticancer agents due to inherent and acquired drug resistance, and low drug permeability. Targeted drug delivery systems with significant improvement in therapeutic efficiency are needed for successful HCC therapy. Here, we report the results of a technique optimized for the synthesis and formulation of antisense-miRNA-21 and gemcitabine (GEM) co-encapsulated PEGylated-PLGA nanoparticles (NPs) and their in vitro therapeutic efficacy in human HCC (Hep3B and HepG2) cells. Water-in-oil-in-water (w/o/w) double emulsion method was used to coload antisense-miRNA-21 and GEM in PEGylated-PLGA-NPs. The cellular uptake of NPs displayed time dependent increase of NPs concentration inside the cells. Cell viability analyses in HCC (Hep3B and HepG2) cells treated with antisense-miRNA-21 and GEM co-encapsulated NPs demonstrated a nanoparticle concentration dependent decrease in cell proliferation, and the maximum therapeutic efficiency was attained in cells treated with nanoparticles co-encapsulated with antisense-miRNA-21 and GEM. Flow cytometry analysis showed that control NPs and antisense-miRNA-21-loaded NPs are not cytotoxic to both HCC cell lines, whereas treatment with free GEM and GEM-loaded NPs resulted in ∼9% and ∼15% apoptosis, respectively. Cell cycle status analysis of both cell lines treated with free GEM or NPs loaded with GEM or antisense-miRNA-21 displayed a significant cell cycle arrest at the S-phase. Cellular pathway analysis indicated that Bcl2 expression was significantly upregulated in GEM treated cells, and as expected, PTEN expression was noticeably upregulated in cells treated with antisense-miRNA-21. In summary, we successfully synthesized PEGylated-PLGA nanoparticles co- encapsulated with antisense-miRNA-21 and GEM. These co-encapsulated nanoparticles revealed increased treatment efficacy in HCC cells, compared to cells treated with either antisense-miRNA-21- or GEM-loaded NPs at equal concentration, indicating that down-regulation of endogenous miRNA-21 function can reduce HCC cell viability and proliferation in response to GEM treatment.
Collapse
|
41
|
Ananta JS, Paulmurugan R, Massoud TF. Tailored Nanoparticle Codelivery of antimiR-21 and antimiR-10b Augments Glioblastoma Cell Kill by Temozolomide: Toward a “Personalized” Anti-microRNA Therapy. Mol Pharm 2016; 13:3164-75. [DOI: 10.1021/acs.molpharmaceut.6b00388] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jeyarama S. Ananta
- Laboratory of Experimental
and Molecular Neuroimaging, Molecular Imaging Program at Stanford
(MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, California 94305-5427, United States
| | - Ramasamy Paulmurugan
- Laboratory of Experimental
and Molecular Neuroimaging, Molecular Imaging Program at Stanford
(MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, California 94305-5427, United States
| | - Tarik F. Massoud
- Laboratory of Experimental
and Molecular Neuroimaging, Molecular Imaging Program at Stanford
(MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, California 94305-5427, United States
| |
Collapse
|
42
|
Küçüktürkmen B, Devrim B, Saka OM, Yilmaz Ş, Arsoy T, Bozkir A. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm 2016; 43:12-21. [PMID: 27277750 DOI: 10.1080/03639045.2016.1200069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Burcu Devrim
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Ongun M Saka
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Şükran Yilmaz
- b Foot and Mouth Disease Institute , Ankara , Turkey
| | - Taibe Arsoy
- b Foot and Mouth Disease Institute , Ankara , Turkey
| | - Asuman Bozkir
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| |
Collapse
|
43
|
Yu T, Xu B, He L, Xia S, Chen Y, Zeng J, Liu Y, Li S, Tan X, Ren K, Yao S, Song X. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration. Int J Nanomedicine 2016; 11:743-59. [PMID: 26955272 PMCID: PMC4772918 DOI: 10.2147/ijn.s97223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Bei Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Lili He
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, Sichuan, People's Republic of China
| | - Shan Xia
- Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Yongmei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Shuangzhi Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyue Tan
- Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People's Republic of China
| | - Ke Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
44
|
Bhargava-Shah A, Foygel K, Devulapally R, Paulmurugan R. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2016; 11:235-47. [PMID: 26787319 DOI: 10.2217/nnm.15.193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study explores the use of hydrophilic poly(ethylene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NPs) as delivery system to improve the antitumor effect of antiobesity drug orlistat for triple-negative breast cancer (TNBC) therapy by improving its bioavailability. MATERIALS & METHODS PLGA-PEG-NPs were synthesized by emulsion-diffusion-evaporation method, and the experiments were conducted in vitro in MDA-MB-231 and SKBr3 TNBC and normal breast fibroblast cells. RESULTS Delivery of orlistat via PLGA-PEG-NPs reduced its IC50 compared with free orlistat. Combined treatment of orlistat-loaded NPs and doxorubicin or antisense-miR-21-loaded NPs significantly enhanced apoptotic effect compared with independent doxorubicin, anti-miR-21-loaded NPs, orlistat-loaded NPs or free orlistat treatments. CONCLUSION We demonstrate that orlistat in combination with antisense-miR-21 or current chemotherapy holds great promise as a novel and versatile treatment agent for TNBC.
Collapse
Affiliation(s)
- Aarohi Bhargava-Shah
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kira Foygel
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Rammohan Devulapally
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
45
|
Xu B, Xia S, Wang F, Jin Q, Yu T, He L, Chen Y, Liu Y, Li S, Tan X, Ren K, Yao S, Zeng J, Song X. Polymeric Nanomedicine for Combined Gene/Chemotherapy Elicits Enhanced Tumor Suppression. Mol Pharm 2016; 13:663-76. [PMID: 26695934 DOI: 10.1021/acs.molpharmaceut.5b00922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bei Xu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shan Xia
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan 610041, China
| | - Fazhan Wang
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Quansheng Jin
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Ting Yu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lili He
- College of Chemistry and Environment Protection
Engineering, Southwest University for Nationalities, Chengdu, Sichuan 610041, China
| | - Yan Chen
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yongmei Liu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shuangzhi Li
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiaoyue Tan
- Department
of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin 300071, China
| | - Ke Ren
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shaohua Yao
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jun Zeng
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiangrong Song
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
46
|
Matai I, Gopinath P. Hydrophobic myristic acid modified PAMAM dendrimers augment the delivery of tamoxifen to breast cancer cells. RSC Adv 2016; 6:24808-24819. [DOI: 10.1039/c6ra02391f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In the present study, cationic generation 5 polyamido amine (G5 PAMAM) dendrimers were hydrophobically modified by grafting the surface with lipid-like myristic acid (My) tails to augment their potential as a drug delivery vectorin vitro.
Collapse
Affiliation(s)
- Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
47
|
Paulmurugan R, Bhethanabotla R, Mishra K, Devulapally R, Foygel K, Sekar TV, Ananta JS, Massoud TF, Joy A. Folate Receptor-Targeted Polymeric Micellar Nanocarriers for Delivery of Orlistat as a Repurposed Drug against Triple-Negative Breast Cancer. Mol Cancer Ther 2015; 15:221-31. [PMID: 26553061 DOI: 10.1158/1535-7163.mct-15-0579] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2015] [Indexed: 01/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is a recalcitrant malignancy with no available targeted therapy. Off-target effects and poor bioavailability of the FDA-approved antiobesity drug orlistat hinder its clinical translation as a repurposed new drug against TNBC. Here, we demonstrate a newly engineered drug formulation for packaging orlistat tailored to TNBC treatment. We synthesized TNBC-specific folate receptor-targeted micellar nanoparticles (NP) carrying orlistat, which improved the solubility (70-80 μg/mL) of this water-insoluble drug. The targeted NPs also improved the delivery and bioavailability of orlistat to MDA-MB-231 cells in culture and to tumor xenografts in a nude mouse model. We prepared HEA-EHA copolymer micellar NPs by copolymerization of 2-hydroxyethylacrylate (HEA) and 2-ethylhexylacrylate (EHA), and functionalized them with folic acid and an imaging dye. Fluorescence-activated cell sorting (FACS) analysis of TNBC cells indicated a dose-dependent increase in apoptotic populations in cells treated with free orlistat, orlistat NPs, and folate-receptor-targeted Fol-HEA-EHA-orlistat NPs in which Fol-HEA-EHA-orlistat NPs showed significantly higher cytotoxicity than free orlistat. In vitro analysis data demonstrated significant apoptosis at nanomolar concentrations in cells activated through caspase-3 and PARP inhibition. In vivo analysis demonstrated significant antitumor effects in living mice after targeted treatment of tumors, and confirmed by fluorescence imaging. Moreover, folate receptor-targeted Fol-DyLight747-orlistat NP-treated mice exhibited significantly higher reduction in tumor volume compared to control group. Taken together, these results indicate that orlistat packaged in HEA-b-EHA micellar NPs is a highly promising new drug formulation for TNBC therapy. Mol Cancer Ther; 15(2); 221-31. ©2015 AACR.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California.
| | - Rohith Bhethanabotla
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - Kaushik Mishra
- Department of Polymer Science, University of Akron, Akron, Ohio
| | - Rammohan Devulapally
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - Kira Foygel
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - Thillai V Sekar
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - Jeyarama S Ananta
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - Abraham Joy
- Department of Polymer Science, University of Akron, Akron, Ohio
| |
Collapse
|