1
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
2
|
Abstract
During the past two decades, one–dimensional (1D) metal–oxide nanowire (NW)-based molecular sensors have been witnessed as promising candidates to electrically detect volatile organic compounds (VOCs) due to their high surface to volume ratio, single crystallinity, and well-defined crystal orientations. Furthermore, these unique physical/chemical features allow the integrated sensor electronics to work with a long-term stability, ultra-low power consumption, and miniature device size, which promote the fast development of “trillion sensor electronics” for Internet of things (IoT) applications. This review gives a comprehensive overview of the recent studies and achievements in 1D metal–oxide nanowire synthesis, sensor device fabrication, sensing material functionalization, and sensing mechanisms. In addition, some critical issues that impede the practical application of the 1D metal–oxide nanowire-based sensor electronics, including selectivity, long-term stability, and low power consumption, will be highlighted. Finally, we give a prospective account of the remaining issues toward the laboratory-to-market transformation of the 1D nanostructure-based sensor electronics.
Collapse
|
3
|
Jung WB, Jang S, Cho SY, Jeon HJ, Jung HT. Recent Progress in Simple and Cost-Effective Top-Down Lithography for ≈10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907101. [PMID: 32243015 DOI: 10.1002/adma.201907101] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Indexed: 05/24/2023]
Abstract
The development of a simple and cost-effective method for fabricating ≈10 nm scale nanopatterns over large areas is an important issue, owing to the performance enhancement such patterning brings to various applications including sensors, semiconductors, and flexible transparent electrodes. Although nanoimprinting, extreme ultraviolet, electron beams, and scanning probe litho-graphy are candidates for developing such nanopatterns, they are limited to complicated procedures with low throughput and high startup cost, which are difficult to use in various academic and industry fields. Recently, several easy and cost-effective lithographic approaches have been reported to produce ≈10 nm scale patterns without defects over large areas. This includes a method of reducing the size using the narrow edge of a pattern, which has been attracting attention for the past several decades. More recently, secondary sputtering lithography using an ion-bombardment technique was reported as a new method to create high-resolution and high-aspect-ratio structures. Recent progress in simple and cost-effective top-down lithography for ≈10 nm scale nanopatterns via edge and secondary sputtering techniques is reviewed. The principles, technical advances, and applications are demonstrated. Finally, the future direction of edge and secondary sputtering lithography research toward issues to be resolved to broaden applications is discussed.
Collapse
Affiliation(s)
- Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sungwoo Jang
- Semiconductor R&D Center, Samsung Electronics Co., Ltd, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Soo-Yeon Cho
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hwan-Jin Jeon
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Siheung-si, Gyeonggi-do, 15073, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Leandro L, Gunnarsson CP, Reznik R, Jöns KD, Shtrom I, Khrebtov A, Kasama T, Zwiller V, Cirlin G, Akopian N. Nanowire Quantum Dots Tuned to Atomic Resonances. NANO LETTERS 2018; 18:7217-7221. [PMID: 30336054 DOI: 10.1021/acs.nanolett.8b03363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices. In this work we show controlled growth of nanowire-quantum-dot structures on silicon, frequency tuned to atomic transitions. We grow GaAs quantum dots in AlGaAs nanowires with a nearly pure crystal structure and excellent optical properties. We precisely control the dimensions of quantum dots and their position inside nanowires and demonstrate that the emission wavelength can be engineered over the range of at least 30 nm around 765 nm. By applying an external magnetic field, we are able to fine-tune the emission frequency of our nanowire quantum dots to the D2 transition of 87Rb. We use the Rb transitions to precisely measure the actual spectral line width of the photons emitted from a nanowire quantum dot to be 9.4 ± 0.7 μeV, under nonresonant excitation. Our work brings highly desirable functionalities to quantum technologies, enabling, for instance, a realization of a quantum network, based on an arbitrary number of nanowire single-photon sources, all operating at the same frequency of an atomic transition.
Collapse
Affiliation(s)
- Lorenzo Leandro
- DTU Department of Photonics Engineering , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Christine P Gunnarsson
- DTU Department of Photonics Engineering , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Rodion Reznik
- St. Petersburg Academic University , RAS , St. Petersburg 194021 , Russia
- ITMO University , Kronverkskiy pr. 49 , 197101 St. Petersburg , Russia
| | - Klaus D Jöns
- Department of Applied Physics , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Igor Shtrom
- St. Petersburg Academic University , RAS , St. Petersburg 194021 , Russia
| | - Artem Khrebtov
- ITMO University , Kronverkskiy pr. 49 , 197101 St. Petersburg , Russia
| | - Takeshi Kasama
- DTU Department of Photonics Engineering , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Valery Zwiller
- Department of Applied Physics , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
- Kavli Institute of Nanoscience , TU Delft , 2628CJ Delft , Netherlands
| | - George Cirlin
- St. Petersburg Academic University , RAS , St. Petersburg 194021 , Russia
- ITMO University , Kronverkskiy pr. 49 , 197101 St. Petersburg , Russia
| | - Nika Akopian
- DTU Department of Photonics Engineering , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
5
|
Vukajlovic-Plestina J, Dubrovskii VG, Tütüncuoǧlu G, Potts H, Ricca R, Meyer F, Matteini F, Leran JB, I Morral AF. Molecular beam epitaxy of InAs nanowires in SiO 2 nanotube templates: challenges and prospects for integration of III-Vs on Si. NANOTECHNOLOGY 2016; 27:455601. [PMID: 27698287 DOI: 10.1088/0957-4484/27/45/455601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III-Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires in SiO2/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor-liquid-solid growth enabled by the local conditions inside the nanotube template. The conditions for high yield of vertical nanowires are investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model that further substantiates our findings. This work opens new perspectives for monolithic integration of III-Vs on the silicon platform enabling new applications in the electronics, optoelectronics and energy harvesting arena.
Collapse
Affiliation(s)
- Jelena Vukajlovic-Plestina
- Laboratory of Semiconductor Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Güder F, Frei E, Kücükbayrak UM, Menzel A, Thomann R, Luptak R, Hollaender B, Krossing I, Zacharias M. Engineered high aspect ratio vertical nanotubes as a model system for the investigation of catalytic methanol synthesis over Cu/ZnO. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1576-1582. [PMID: 24392784 DOI: 10.1021/am4042959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Catalytically synthesized methanol from H2 and CO2 using porous Cu/ZnO aggregates is a promising, carbon neutral, and renewable alternative to replace fossil fuel based transport fuels. However, the absence of surface-engineered model systems to understand and improve the industrial Cu/ZnO catalyst poses a big technological gap in efforts to increase industrial methanol conversion efficiency. In this work, we report a novel process for the fabrication of patterned, vertically aligned high aspect ratio 1D nanostructures on Si that can be used as an engineered model catalyst. The proposed strategy employs near-field phase shift lithography (NF-PSL), deep reactive ion etching (DRIE), and atomic layer deposition (ALD) to pattern, etch, and coat Si wafers to produce high aspect ratio 1D nanostructures. Using this method, we produced a model system consisting of high aspect ratio Cu-decorated ZnO nanotubes (NTs) to investigate the morphological effects of ZnO catalyst support in comparison to the planar Cu/ZnO catalyst in terms of the catalytic reactions. The engineered catalysts performed 70 times better in activating CO2 than the industrial catalyst. In light of the obtained results, several important points are highlighted, and recommendations are made to achieve higher catalytic performance.
Collapse
Affiliation(s)
- Firat Güder
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg , Freiburg 79110, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Heiss M, Russo-Averchi E, Dalmau-Mallorquí A, Tütüncüoğlu G, Matteini F, Rüffer D, Conesa-Boj S, Demichel O, Alarcon-Lladó E, Fontcuberta i Morral A. III-V nanowire arrays: growth and light interaction. NANOTECHNOLOGY 2014; 25:014015. [PMID: 24334728 DOI: 10.1088/0957-4484/25/1/014015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111)Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.
Collapse
|
8
|
Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal D, Gupta S. Metal oxide nanowires for chemiresistive gas sensors: Issues, challenges and prospects. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Subannajui K, Güder F, Danhof J, Menzel A, Yang Y, Kirste L, Wang C, Cimalla V, Schwarz U, Zacharias M. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition. NANOTECHNOLOGY 2012; 23:235607. [PMID: 22609898 DOI: 10.1088/0957-4484/23/23/235607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, the controlled fabrication of highly ordered ZnO nanowire (NW) arrays on silicon substrates is reported. Si NWs fabricated by a combination of phase shift lithography and etching are used as a template and are subsequently substituted by ZnO NWs with a dry-etching technique and atomic layer deposition. This fabrication technique allows the vertical ZnO NWs to be fabricated on 4 in Si wafers. Room temperature photoluminescence and micro-photoluminescence are used to observe the optical properties of the atomic layer deposition (ALD) based ZnO NWs. The sharp UV luminescence observed from the ALD ZnO NWs is unexpected for the polycrystalline nanostructure. Surprisingly, the defect related luminescence is much decreased compared to an ALD ZnO film deposited at the same time ona plane substrate. Electrical characterization was carried out by using nanomanipulators. With the p-type Si substrate and the n-type ZnO NWs the nanodevices represent p–n NW diodes.The nanowire diodes show a very high breakthrough potential which implies that the ALD ZnO NWs can be used for future electronic applications.
Collapse
Affiliation(s)
- Kittitat Subannajui
- Institute of Microsystems Engineering, University of Freiburg, Georges Koehler Allee 103, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|