1
|
Rivero-Cruz BE, Rojas-Brandao ME, Correa-Benítez A, Becker I, Xolalpa-Aroche A, Delgado-Dominguez J, Rivero-Cruz JF. Scaptotrigona mexicana Propolis from Totonacapan Region: Chemical Composition, Antioxidant and Antibacterial Activities. Molecules 2025; 30:1370. [PMID: 40142145 PMCID: PMC11944469 DOI: 10.3390/molecules30061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The propolis produced by stingless bees is a complex mixture of natural sticky components mixed with soil or clay. Global research on propolis has focused on studying the biological and pharmacological properties and chemical composition of stingless bee propolis from Brazil, Indonesia, and other regions. However, studies of stingless bee propolis produced in Mexico are scarce. This study aimed to determine the chemical composition of the geopropolis of Scaptotrigona mexicana collected in the Totonacapan region and to evaluate its antioxidant and antibacterial activities. The phenolic contents of the ethanolic extract of the collected propolis ranged from 2.45 ± 0.03 mg GAE/g to 3.48 ± 0.56 mg GAE/g of dry extract. The total flavonoid content ranged from 0.69 ± 0.03 mg QE/g to 0.84 ± 0.009 mg QE/g of dry extract. The antioxidant activity of the ethanolic extracts was assessed via DPPH, ABTS, and FRAP assays. The minimum inhibitory concentration values exhibited by the ethanolic extract (>512 g/mL) for Gram-negative bacteria (Pseudomonas aerugunosa and Phorphyromonas gingivalis) were higher than those of Gram-positive bacteria. The stingless bee propolis extract showed the highest antibacterial activity against Streptococcus mutans (256 g/mL). Five known compounds, taraxeryl acetate (1), lupeol (3), cicloart-23-en-3β,25-diol (5), mangiferoic acid (6), and 5-(11'Z-heptadecenyl)-resorcinol (7), and two irresoluble mixtures of 3-O-acetyl-α-(2a) and 3-O-acetyl-β-amyrins (2b), and α- (4a) and -amyrins (4b), were identified by nuclear magnetic resonance spectroscopy and mass spectrometry. Additionally, 39 volatile compounds were identified via headspace-solid phase microextraction using the hyphenated gas chromatography coupled to mass spectrometry time-of-flight. The main volatile compounds detected include trans-α-bergamotene (8.15%), hexanal (7.17%), 2-heptanone (7.60%), and α-copaene (7.09%).
Collapse
Affiliation(s)
- Blanca E. Rivero-Cruz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Maria Ema Rojas-Brandao
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Adriana Correa-Benítez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Ingeborg Becker
- Facultad de Médicina, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico; (I.B.); (J.D.-D.)
| | - Aurora Xolalpa-Aroche
- Centro de Innovacion para el Desarrollo Apícola Sustentable en Quintana Roo, Universidad Intercultural Maya de Quintana Roo, Jose Maria Morelos 77890, Mexico;
| | - José Delgado-Dominguez
- Facultad de Médicina, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico; (I.B.); (J.D.-D.)
| | - J. Fausto Rivero-Cruz
- Centro de Innovacion para el Desarrollo Apícola Sustentable en Quintana Roo, Universidad Intercultural Maya de Quintana Roo, Jose Maria Morelos 77890, Mexico;
- Investigadores por Mexico, Comisión Intersecretarial de Bioseguridad de los Organismos Genéticamente Modificados (CIBIOGEM-SECIHTI), Ciudad de Mexico 03940, Mexico
| |
Collapse
|
2
|
Romero-Estrada A, Boto A, González-Christen J, Romero-Estudillo I, Garduño-Ramírez ML, Razo-Hernández RS, Marquina S, Maldonado-Magaña A, Columba-Palomares MC, Sánchez-Carranza JN, Alvarez L. Synthesis, Biological Evaluation, and Molecular Docking Study of 3-Amino and 3-Hydroxy- seco A Derivatives of α-Amyrin and 3-Epilupeol as Inhibitors of COX-2 Activity and NF-kB Activation. JOURNAL OF NATURAL PRODUCTS 2022; 85:787-803. [PMID: 35175765 DOI: 10.1021/acs.jnatprod.1c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, a series of novel 3-seco-A derivatives of the natural triterpenes α-amyrin (1) and 3-epilupeol (2) were synthesized by a one-pot radical scission-oxidation procedure and evaluated in vitro and in vivo for their capacity to inhibit the inflammatory process. For the in vitro studies, the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f) were consistently effective in inhibiting NO, IL-6, and TNF-α secretion, as well as inhibition of NF-κB activation, in RAW cells stimulated by LPS. The further in vivo anti-inflammatory study revealed that the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f), together with 1g, were the most effective in inhibiting TPA-induced edema. Interestingly, the α-amyrin derivatives were the most potent inhibitors of COX-2, but inhibited COX-1 only to some extent. The hydroxyl derivative (1c) was selective for COX-2 inhibition (66.3 ± 1.1% at 17.5 μM) without affecting the COX-1 isoform and did not present toxicity. Molecular docking studies revealed that these compounds bind with their polar region in the cavity over Arg-120, and their lipophilic part is orientated to the HEM cofactor similarly to the natural substrate arachidonic acid in the catalytic site of COX-2. These results indicated that seco-A ursane derivatives could be considered promising candidates for the future development of selective NF-κB and COX-2 inhibitors.
Collapse
Affiliation(s)
- Antonio Romero-Estrada
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avenuda Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Judith González-Christen
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Ivan Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Silvia Marquina
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| | - Amalia Maldonado-Magaña
- Instituto Tecnológico de Milpa Alta. Independencia Sur No. 36, Col. San Salvador Cuauhténco, Alcaldía Milpa Alta CDMX 12300, México
| | - María C Columba-Palomares
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209 Morelos, México
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México
| |
Collapse
|
4
|
Moridi Farimani M, Nejad Ebrahimi S, Salehi P, Bahadori MB, Sonboli A, Khavasi HR, Zimmermann S, Kaiser M, Hamburger M. Antitrypanosomal triterpenoid with an ε-lactone E-ring from Salvia urmiensis. JOURNAL OF NATURAL PRODUCTS 2013; 76:1806-1809. [PMID: 24007549 DOI: 10.1021/np400337a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new triterpenoid, urmiensolide (1), was isolated from Salvia urmiensis. The structure was elucidated by a combination of 1D and 2D NMR, HRESIMS, and X-ray crystallographic analyses. The absolute configuration was established by comparison of experimental and simulated ECD spectra. Urmiensolide is the first pentacyclic triterpenoid bearing a ε-lactone E-ring. The compound showed in vitro antitrypanosoal activity with an IC₅₀ value of 5.6 μM against the Trypanosoma brucei rhodesiense STIB 900 strain and a selectivity index of 33. A possible biosynthetic pathway of 1 from α-amyrin is proposed.
Collapse
Affiliation(s)
- Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University , G. C., Evin, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
This review covers the isolation and structure determination of triterpenoids, including squalene derivatives, protostanes, lanostanes, holostanes, cycloartanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes and saponins; 305 references are cited.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow G12 8QQ, UK
| | | |
Collapse
|
7
|
Ramírez-Cisneros MÁ, Rios MY, Déciga-Campos M, Aguilar-Guadarrama AB. Phytochemical study and anti-inflammatory, antidiabetic and free radical scavenger evaluations of Krameria pauciflora methanol extract. Molecules 2012; 17:861-72. [PMID: 22252502 PMCID: PMC6268554 DOI: 10.3390/molecules17010861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 01/04/2023] Open
Abstract
The plant Krameria pauciflora MOC et. Sessé ex DC. is used as an anti-inflammatory and antidiabetic in traditional medicine. The aim of this study was to evaluate the in vivo anti-inflammatory and antidiabetic effects of a methanol extract from the roots of K. pauciflora. Dichloromethane and ethyl acetate extracts obtained by partitioning the methanol extract were also evaluated. Complete methanol and dichloromethane extracts showed anti-inflammatory effects at 3 mg/kg. An anti-inflammatory effect similar to indomethacin (10 mg/kg) was observed when the methanol and dichloromethane extracts, which contain a cycloartane-type triterpene and an sterol, were administered orally at several doses (3, 10, 30 and 100 mg/kg), whereas no anti-inflammatory effect was observed at any dose for the ethyl acetate extract, which contains catechin-type flavonoids. The antidiabetic effect of each extract was also determined. An antihyperglycaemic effect was observed in diabetic rats, but no effect in normoglycaemic animals was observed when the methanol extract was administrated at 30 mg/kg. All of the extracts exhibited radical scavenger activity. Additionally, constituents from all of the extracts were identified by NMR. This article supports the use of K. pauciflora as an anti-inflammatory because it exhibits a similar effect to indomethacin. However, its antidiabetic effect is not completely clear, although it could be useful for preventing diabetic complications.
Collapse
Affiliation(s)
- M. Ángeles Ramírez-Cisneros
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad No. 1001 Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico; (M.Á.R.-C.); (M.Y.R.)
| | - María Yolanda Rios
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad No. 1001 Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico; (M.Á.R.-C.); (M.Y.R.)
| | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México D.F., 11340, Mexico;
| | - A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad No. 1001 Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico; (M.Á.R.-C.); (M.Y.R.)
| |
Collapse
|