1
|
Hoshino S, Onaka H, Abe I. Recent advances in the biosynthetic studies of bacterial organoarsenic natural products. Nat Prod Rep 2025; 42:663-671. [PMID: 39192828 DOI: 10.1039/d4np00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Covering: 1977 to presentArsenic is widely distributed throughout terrestrial and aquatic environments, mainly in highly toxic inorganic forms. To adapt to environmental inorganic arsenic, bacteria have evolved ubiquitous arsenic metabolic strategies by combining arsenite methylation and related redox reactions, which have been extensively studied. Recent reports have shown that some bacteria have specific metabolic pathways associated with structurally and biologically unique organoarsenic natural products. In this highlight, by exemplifying the cases of oxo-arsenosugars, arsinothricin, and bisenarsan, we summarize recent advances in the identification and biosynthesis of bacterial organoarsenic natural products. We also discuss the potential discoveries of novel arsenic-containing natural products of bacterial origins.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Polidore ALA, Caserio AD, Zhu L, Metcalf WW. Complete Biochemical Characterization of Pantaphos Biosynthesis Highlights an Unusual Role for a SAM-Dependent Methyltransferase. Angew Chem Int Ed Engl 2024; 63:e202317262. [PMID: 38141166 PMCID: PMC10873477 DOI: 10.1002/anie.202317262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Pantaphos is small molecule virulence factor made by the plant pathogen Pantoea ananatis. An 11 gene operon, designated hvr for high virulence, is required for production of this phosphonic acid natural product, but the metabolic steps used in its production have yet to be established. Herein, we determine the complete biosynthetic pathway using a combination of bioinformatics, in vitro biochemistry and in vivo heterologous expression. Only 6 of the 11 hvr genes are needed to produce pantaphos, while a seventh is likely to be required for export. Surprisingly, the pathway involves a series of O-methylated intermediates, which are then hydrolyzed to produce the final product. The methylated intermediates are produced by an irreversible S-adenosylmethione (SAM)-dependent methyltransferase that is required to drive a thermodynamically unfavorable dehydration in the preceding step, a function not previously attributed to members of this enzyme class. Methylation of pantaphos by the same enzyme is also likely to limit its toxicity in the producing organism. The pathway also involves a novel flavin-dependent monooxygenase that differs from homologous proteins due to its endogenous flavin-reductase activity. Heterologous production of pantaphos by Escherichia coli strains expressing the minimal gene set strongly supports the in vitro biochemical data.
Collapse
Affiliation(s)
- Alexander L A Polidore
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin, Urbana, IL 61874, USA
| | - Angelica D Caserio
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin, Urbana, IL 61874, USA
| | - Lingyang Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, IL 61874, USA
| | - William W Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin, Urbana, IL 61874, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61874, USA
| |
Collapse
|
3
|
Zhang Y, Chen L, Wilson JA, Cui J, Roodhouse H, Kayrouz C, Pham TM, Ju KS. Valinophos Reveals a New Route in Microbial Phosphonate Biosynthesis That Is Broadly Conserved in Nature. J Am Chem Soc 2022; 144:9938-9948. [PMID: 35617676 PMCID: PMC9284248 DOI: 10.1021/jacs.2c02854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphonate natural products are potent inhibitors of cellular metabolism with an established record of commercialization in medicine and biotechnology. Although genome mining has emerged as an accelerated method for the discovery of new phosphonates, a robust framework of their metabolism is needed to identify the pathways most likely to yield compounds with desired activities. Here we expand our understanding of these natural products by reporting the complete biosynthetic pathway for valinophos, a phosphonopeptide natural product containing the unusual (R)-2,3-dihydroxypropylphosphonate (DHPPA) scaffold. The pathway was defined by several enzymatic transformations and intermediates previously unknown to phosphonate natural products. A dedicated dehydrogenase served as a new phosphoenolpyruvate mutase coupling enzyme. Notably, its reduction of phosphonopyruvate to phosphonolactate defined a new early branchpoint in phosphonate biosynthesis. Functionally interconnected kinase and reductase enzymes catalyzed reactions reminiscent of glycolysis and arginine biosynthesis to produce a transient, but essential, phosphonolactaldehyde intermediate. We demonstrate esterification of l-valine onto DHPPA as a new biochemical activity for ATP-Grasp ligase enzymes. Unexpectedly, a second amino acid ligase then adjoined additional amino acids at the valinyl moiety to produce a suite of DHPPA-dipeptides. The genes for DHPPA biosynthesis were discovered among genomes of bacteria from wide-ranging habitats, suggesting a wealth of unknown compounds that may originate from this core pathway. Our findings establish new biosynthetic principles for natural products and provide definition to unexplored avenues for bioactive phosphonate genome mining.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li Chen
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jake A Wilson
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jerry Cui
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah Roodhouse
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Zhang Y, Pham TM, Kayrouz C, Ju KS. Biosynthesis of Argolaphos Illuminates the Unusual Biochemical Origins of Aminomethylphosphonate and N ε-Hydroxyarginine Containing Natural Products. J Am Chem Soc 2022; 144:9634-9644. [PMID: 35616638 DOI: 10.1021/jacs.2c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and Nε-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the Nε position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and Nε-hydroxyarginine natural products that await discovery.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.,Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.,Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Scotti C, Barlow JW. Natural Products Containing the Nitrile Functional Group and Their Biological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221099973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The importance of nitriles as a key class of chemicals with applications across the sciences is widely appreciated. The natural world is an underappreciated source of chemically diverse nitriles. With this in mind, this review describes novel nitrile-containing molecules isolated from natural sources from 1998 to 2021, as well as a discussion of the biological activity of these compounds. This study gathers 192 molecules from varied origins across the plant, animal, and microbial worlds. Their biological activity is extremely diverse, with many potential medicinal applications.
Collapse
Affiliation(s)
- Camille Scotti
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, Mulhouse, France
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - James W. Barlow
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
6
|
Abstract
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science.
Collapse
|
7
|
Zangelmi E, Stanković T, Malatesta M, Acquotti D, Pallitsch K, Peracchi A. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: ( R)-1-Hydroxy-2-aminoethylphosphonate Ammonia-lyase. Biochemistry 2021; 60:1214-1225. [PMID: 33830741 PMCID: PMC8154272 DOI: 10.1021/acs.biochem.1c00092] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Indexed: 01/09/2023]
Abstract
Phosphonates represent an important source of bioavailable phosphorus in certain environments. Accordingly, many microorganisms (particularly marine bacteria) possess catabolic pathways to degrade these molecules. One example is the widespread hydrolytic route for the breakdown of 2-aminoethylphosphonate (AEP, the most common biogenic phosphonate). In this pathway, the aminotransferase PhnW initially converts AEP into phosphonoacetaldehyde (PAA), which is then cleaved by the hydrolase PhnX to yield acetaldehyde and phosphate. This work focuses on a pyridoxal 5'-phosphate-dependent enzyme that is encoded in >13% of the bacterial gene clusters containing the phnW-phnX combination. This enzyme (which we termed PbfA) is annotated as a transaminase, but there is no obvious need for an additional transamination reaction in the established AEP degradation pathway. We report here that PbfA from the marine bacterium Vibrio splendidus catalyzes an elimination reaction on the naturally occurring compound (R)-1-hydroxy-2-aminoethylphosphonate (R-HAEP). The reaction releases ammonia and generates PAA, which can be then hydrolyzed by PhnX. In contrast, PbfA is not active toward the S enantiomer of HAEP or other HAEP-related compounds such as ethanolamine and d,l-isoserine, indicating a very high substrate specificity. We also show that R-HAEP (despite being structurally similar to AEP) is not processed efficiently by the PhnW-PhnX couple in the absence of PbfA. In summary, the reaction catalyzed by PbfA serves to funnel R-HAEP into the hydrolytic pathway for AEP degradation, expanding the scope and the usefulness of the pathway itself.
Collapse
Affiliation(s)
- Erika Zangelmi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Toda Stanković
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Marco Malatesta
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Domenico Acquotti
- Centro
di Servizi e Misure “Giuseppe Casnati”, University of Parma, I-43124 Parma, Italy
| | - Katharina Pallitsch
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Alessio Peracchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| |
Collapse
|
8
|
Shiraishi T, Kuzuyama T. Biosynthetic pathways and enzymes involved in the production of phosphonic acid natural products. Biosci Biotechnol Biochem 2021; 85:42-52. [PMID: 33577658 DOI: 10.1093/bbb/zbaa052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Phosphonates are organophosphorus compounds possessing a characteristic C-P bond in which phosphorus is directly bonded to carbon. As phosphonates mimic the phosphates and carboxylates of biological molecules to potentially inhibit metabolic enzymes, they could be lead compounds for the development of a variety of drugs. Fosfomycin (FM) is a representative phosphonate natural product that is widely used as an antibacterial drug. Here, we review the biosynthesis of FM, which includes a recent breakthrough to find a missing link in the biosynthetic pathway that had been a mystery for a quarter-century. In addition, we describe the genome mining of phosphonate natural products using the biosynthetic gene encoding an enzyme that catalyzes C-P bond formation. We also introduce the chemoenzymatic synthesis of phosphonate derivatives. These studies expand the repertoires of phosphonates and the related biosynthetic machinery. This review mainly covers the years 2012-2020.
Collapse
Affiliation(s)
- Taro Shiraishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Kayrouz CM, Zhang Y, Pham TM, Ju KS. Genome Mining Reveals the Phosphonoalamide Natural Products and a New Route in Phosphonic Acid Biosynthesis. ACS Chem Biol 2020; 15:1921-1929. [PMID: 32484327 DOI: 10.1021/acschembio.0c00256] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphonic acid natural products have potent inhibitory activities that have led to their application as antibiotics. Recent studies uncovered large collections of gene clusters encoding for unknown phosphonic acids across microbial genomes. However, our limited understanding of their metabolism presents a significant challenge toward accurately informing the discovery of new bioactive compounds directly from sequence information alone. Here, we use genome mining to identify a family of gene clusters encoding a conserved branch point unknown to bacterial phosphonic acid biosynthesis. The products of this gene cluster family are the phosphonoalamides, four new phosphonopeptides with l-phosphonoalanine as the common headgroup. Phosphonoalanine and phosphonoalamide A are antibacterials, with strongest inhibition observed against strains of Bacillus and Escherichia coli. Heterologous expression identified the gene required for transamination of phosphonopyruvate to phosphonoalanine, a new route for bacterial phosphonic acids encoded within genomes of diverse microbes. These results expand our knowledge of phosphonic acid diversity and pathways for their biosynthesis.
Collapse
Affiliation(s)
- Chase M. Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M. Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Zhang D, Lian M, Liu J, Tang S, Liu G, Ma C, Meng Q, Peng H, Zhu D. Preparation of O-Protected Cyanohydrins by Aerobic Oxidation of α-Substituted Malononitriles in the Presence of Diarylphosphine Oxides. Org Lett 2019; 21:2597-2601. [DOI: 10.1021/acs.orglett.9b00569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dapeng Zhang
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Mingming Lian
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Jia Liu
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Shukun Tang
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Guangzhi Liu
- Irradiation Technology Application Factory of Changshu, Changshu 215557, China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology Department, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology Department, Dalian University of Technology, Dalian 116024, China
| | - Haisheng Peng
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| | - Daling Zhu
- Department of Pharmaceutics, Harbin Medical University (Daqing), Daqing 163319, China
| |
Collapse
|
11
|
Ye J, Zhu Y, Hou B, Wu H, Zhang H. Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Biosci Biotechnol Biochem 2018; 83:482-489. [PMID: 30526412 DOI: 10.1080/09168451.2018.1553605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism.
Collapse
Affiliation(s)
- Jiang Ye
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,b Department of Applied Biology , East China University of Science and Technology , Shanghai , China
| | - Yunxia Zhu
- b Department of Applied Biology , East China University of Science and Technology , Shanghai , China
| | - Bingbing Hou
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,b Department of Applied Biology , East China University of Science and Technology , Shanghai , China
| | - Haizhen Wu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,b Department of Applied Biology , East China University of Science and Technology , Shanghai , China
| | - Huizhan Zhang
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,b Department of Applied Biology , East China University of Science and Technology , Shanghai , China
| |
Collapse
|
12
|
Goettge MN, Cioni JP, Ju KS, Pallitsch K, Metcalf WW. PcxL and HpxL are flavin-dependent, oxime-forming N-oxidases in phosphonocystoximic acid biosynthesis in Streptomyces. J Biol Chem 2018; 293:6859-6868. [PMID: 29540479 PMCID: PMC5936822 DOI: 10.1074/jbc.ra118.001721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Several oxime-containing small molecules have useful properties, including antimicrobial, insecticidal, anticancer, and immunosuppressive activities. Phosphonocystoximate and its hydroxylated congener, hydroxyphosphonocystoximate, are recently discovered oxime-containing natural products produced by Streptomyces sp. NRRL S-481 and Streptomyces regensis NRRL WC-3744, respectively. The biosynthetic pathways for these two compounds are proposed to diverge at an early step in which 2-aminoethylphosphonate (2AEPn) is converted to (S)-1-hydroxy-2-aminoethylphosphonate ((S)-1H2AEPn) in S. regensis but not in Streptomyces sp. NRRL S-481). Subsequent installation of the oxime moiety into either 2AEPn or (S)-1H2AEPn is predicted to be catalyzed by PcxL or HpxL from Streptomyces sp. NRRL S-481 and S. regensis NRRL WC-3744, respectively, whose sequence and predicted structural characteristics suggest they are unusual N-oxidases. Here, we show that recombinant PcxL and HpxL catalyze the FAD- and NADPH-dependent oxidation of 2AEPn and 1H2AEPn, producing a mixture of the respective aldoximes and nitrosylated phosphonic acid products. Measurements of catalytic efficiency indicated that PcxL has almost an equal preference for 2AEPn and (R)-1H2AEPn. 2AEPn was turned over at a 10-fold higher rate than (R)-1H2AEPn under saturating conditions, resulting in a similar but slightly lower kcat/Km We observed that (S)-1H2AEPn is a relatively poor substrate for PcxL but is clearly the preferred substrate for HpxL, consistent with the proposed biosynthetic pathway in S. regensis. HpxL also used both 2AEPn and (R)-1H2AEPn, with the latter inhibiting HpxL at high concentrations. Bioinformatic analysis indicated that PcxL and HpxL are members of a new class of oxime-forming N-oxidases that are broadly dispersed among bacteria.
Collapse
Affiliation(s)
- Michelle N Goettge
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Joel P Cioni
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Kou-San Ju
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Katharina Pallitsch
- the Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - William W Metcalf
- From the Department of Microbiology and the Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
13
|
Pallitsch K, Happl B, Stieger C. Determination of the Absolute Configuration of (-)-Hydroxynitrilaphos and Related Biosynthetic Questions. Chemistry 2017; 23:15655-15665. [PMID: 28703941 DOI: 10.1002/chem.201702904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 12/23/2022]
Abstract
The ongoing search for bioactive natural products has led to the development of new genome-based screening approaches to identify possible phosphonate producing microorganisms. From the identified phosphonate producers, several until now unknown phosphonic acid natural products were isolated, including (hydroxy)nitrilaphos (4 and 5) and (hydroxy)phosphonocystoximate (7 and 6). We present the synthesis of phosphonocystoximate via an aldoxime intermediate. Chlorination and coupling with methyl N-acetylcysteinate furnished 6 after global deprotection. The obtained experimental data confirm the previously assigned structure of the natural product. We were also able to determine the absolute configuration of (-)-hydroxynitrilaphos. Chiral resolution of diethyl cyanohydroxymethylphosphonate (24) with Noe's lactol furnished both enantiomers of 4. Conversion of (+)-24 to (R)-2-amino-1-hydroxyethylphosphonic acid by reduction of the cyano-group showed (-)-hydroxynitrilaphos ultimately to be S-configured. Further, we present a 13 C-isotope labeling strategy for 4 and 5 that will possibly solve the question of whether hydroxynitrilaphos is a biosynthetic intermediate or a downstream product of hydroxyphosphonocystoximate biosynthesis.
Collapse
Affiliation(s)
- Katharina Pallitsch
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| | - Barbara Happl
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| | - Christian Stieger
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| |
Collapse
|
14
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
15
|
Chin JP, McGrath JW, Quinn JP. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Curr Opin Chem Biol 2016; 31:50-7. [DOI: 10.1016/j.cbpa.2016.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/24/2022]
|
16
|
Cai Y, Li Y, Zhang M, Fu J, Miao Z. Regioselective BF3·Et2O-catalyzed C–H functionalization of indoles and pyrrole with reaction of α-diazophosphonates. RSC Adv 2016. [DOI: 10.1039/c6ra15329a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A regioselective synthesis of β-(3-indol)-β-aminophosphonates and β-(2-pyrrol)-β-aminophosphonates was developed through an intermolecular C–H insertion of α-diazophosphonates with indole and pyrrole derivatives catalyzed by BF3·Et2O.
Collapse
Affiliation(s)
- Yan Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin International Joint Academy of Biomedicine
| | - Yuming Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Minxuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Jiaxin Fu
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
17
|
Zhai Y, Zhao X, Cui Z, Wang M, Wang Y, Li L, Sun Q, Yang X, Zeng D, Liu Y, Sun Y, Lou Z, Shang L, Yin Z. Cyanohydrin as an Anchoring Group for Potent and Selective Inhibitors of Enterovirus 71 3C Protease. J Med Chem 2015; 58:9414-20. [PMID: 26571192 DOI: 10.1021/acs.jmedchem.5b01013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyanohydrin derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. Compared with the reported inhibitors, cyanohydrins (1S,2S,2'S,5S)-16 and (1R,2S,2'S,5S)-16 exhibited significantly improved activity and attractive selectivity profiles against other proteases, which were a result of the specific interactions between the cyanohydrin moiety and the catalytic site of 3C(pro). Cyanohydrin as an anchoring group with high selectivity and excellent inhibitory activity represents a useful choice for cysteine protease inhibitors.
Collapse
Affiliation(s)
- Yangyang Zhai
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Xiangshuai Zhao
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Zhengjie Cui
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Man Wang
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Yaxin Wang
- Laboratory of Structural Biological & Ministry of Education (MOE), and Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University , Beijing 100084, China
| | - Linfeng Li
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Qi Sun
- College of Chemistry, and Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University , Wuhan 430079, China
| | - Xi Yang
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Debin Zeng
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Ying Liu
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science , Beijing 100101, China
| | - Zhiyong Lou
- Laboratory of Structural Biological & Ministry of Education (MOE), and Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University , Beijing 100084, China
| | - Luqing Shang
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Zheng Yin
- College of Pharmacy and State Key Laboratory of Elemento-Organic Chemistry, Nankai University , 94 Weijin Road, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| |
Collapse
|
18
|
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci U S A 2015; 112:12175-80. [PMID: 26324907 DOI: 10.1073/pnas.1500873112] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.
Collapse
|
19
|
Hu K, Werner WJ, Allen KD, Wang SC. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:267-272. [PMID: 25594737 PMCID: PMC4656027 DOI: 10.1002/mrc.4190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.
Collapse
Affiliation(s)
- Kaifeng Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Williard J. Werner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Kylie D. Allen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Susan C. Wang
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
20
|
Ju KS, Doroghazi JR, Metcalf WW. Genomics-enabled discovery of phosphonate natural products and their biosynthetic pathways. J Ind Microbiol Biotechnol 2014; 41:345-56. [PMID: 24271089 PMCID: PMC3946943 DOI: 10.1007/s10295-013-1375-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
Phosphonate natural products have proven to be a rich source of useful pharmaceutical, agricultural, and biotechnology products, whereas study of their biosynthetic pathways has revealed numerous intriguing enzymes that catalyze unprecedented biochemistry. Here we review the history of phosphonate natural product discovery, highlighting technological advances that have played a key role in the recent advances in their discovery. Central to these developments has been the application of genomics, which allowed discovery and development of a global phosphonate metabolic framework to guide research efforts. This framework suggests that the future of phosphonate natural products remains bright, with many new compounds and pathways yet to be discovered.
Collapse
Affiliation(s)
- Kou-San Ju
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - James R. Doroghazi
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - William W. Metcalf
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|