1
|
|
2
|
Easter QT, Blum SA. Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy. Acc Chem Res 2019; 52:2244-2255. [PMID: 31310095 DOI: 10.1021/acs.accounts.9b00219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanistic studies have historically played a key role in the discovery and optimization of reactions in organic and organometallic chemistry. However, even apparently simple organic and organometallic transformations may have surprisingly complicated multistep mechanisms, increasing the difficulty of extracting this mechanistic information. The resulting reaction intermediates often constitute a small fraction of the total reaction mixture, for example, creating a long-term analytical challenge of detection. This challenge is particularly pronounced in cases where the positions of intermediates on the reaction energy surface mean that they do not "build up" to the quantities needed for observation by traditional ensemble analytical tools. Thus, their existence and single-step elementary reactivity cannot be studied directly. New approaches for obtaining this otherwise-missing mechanistic information are therefore needed. Single-turnover, single-molecule, single-particle, and other subensemble fluorescence microscopy techniques are ideally suited for this role because of their sensitivity and spatiotemporal resolution. Inspired by the robust development of single-molecule fluorescence microscopy tools for studying enzyme catalysis, our laboratory has developed analogous fluorescence microscopy techniques to overcome mechanistic challenges in synthetic chemistry, with sensitivity as high as the single-complex, single-turnover, and single-molecule level. These techniques free the experimenter from the previous restriction that intermediates must "build up" to quantities needed for detection by ensemble analytical tools and are suited to systems where synchronization through flash photolysis or stopped flow would be inconvenient or inaccessible. In this process, the techniques transform certain previously "unobservable" intermediates and their elementary single-step reactivities into "observable" ones through sensitive and selective spectral handles. Our program has focused on imaging reactions in small-molecule, organic, and polymer synthetic chemistry with an accent on the reactivity of molecular transition metal complexes and catalysts. Our laboratory initiated studies in this area in 2008 with the imaging of individual palladium complexes that were tagged with spectator fluorophores. To enable imaging, we started with fluorophore selection and development, overcame challenges with imaging in organic solvents, and developed strategies compatible with air-sensitive chemistry and concentrations of reagents generally used in small-molecule synthesis. These studies grew to include characterization of previously unknown organometallic intermediates in the synthesis of organozinc reagents and the direct study of their elementary-step reactivity. The ability to directly observe this behavior generated predictive power for selecting salts that accelerated organozinc reagent formation in synthesis, including salts that had not yet been reported synthetically. In 2017 we also developed the first single-turnover imaging of molecular (chemo)catalysts, which through the technique's spatiotemporal resolution revealed abruptly time-variable polymerization kinetics wherein molecular ruthenium ring-opening metathesis polymerization (ROMP) catalysts changed rates independently from other catalysts less than 1 μm away. Individual catalytic turnovers, each corresponding to one single-chain-elongation reaction arising from insertion of single ROMP or enyne monomers at individual Grubbs II molecular ruthenium catalysts, were spatiotemporally resolved as green flashes in growing polymers. In this Account, we discuss the development of this technique from idea to application, including challenges overcome and strategies created to image synthetic organic and organometallic molecular chemistry at the highest levels of detection sensitivity. We also describe challenges not yet solved and provide an outlook for this growing field at the intersection of microscopy and synthetic/molecular chemistry.
Collapse
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| |
Collapse
|
3
|
Menges JA, Clasen A, Jourdain M, Beckmann J, Hoffmann C, König J, Jung G. Surface Preparation for Single-Molecule Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2506-2516. [PMID: 30664351 DOI: 10.1021/acs.langmuir.8b03603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Immobilization procedures, intended to enable prolonged observation of single molecules by fluorescence microscopy, may generate heterogeneous microenvironments, thus inducing heterogeneity in the molecular behavior. On that account, we propose a straightforward surface preparation procedure for studying chemical reactions on the single-molecule level. Sensor fluorophores were developed, which exhibit dual-emissive characteristics in a homogeneously catalyzed showcase reaction. These molecules undergo a shift of fluorescence wavelength of about 100 nm upon Pd(0)-induced deallylation in the Tsuji-Trost reaction, allowing for separate visualization of the starting material and product. Whereas a simultaneous immobilization of dye and inert silane leads to strongly polydisperse reaction kinetics, a consecutive immobilization routine with deposition of dye molecules as the last step provides substrates underlying the kinetics of ensemble experiments. Also, the found kinetics are unaffected by the chemical variation of inert silanes, nearly uniform, and therefore well reproducible. Additional parameters like photostability, signal-to-noise ratio, dye-molecule density, and spatial distribution of dye molecules are, as well, hardly affected by surface modification in the successive immobilization scheme.
Collapse
Affiliation(s)
- Johannes A Menges
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Anne Clasen
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Matthias Jourdain
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Julian Beckmann
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Caroline Hoffmann
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Julien König
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Gregor Jung
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| |
Collapse
|
4
|
Tenopala-Carmona F, Fronk S, Bazan GC, Samuel IDW, Penedo JC. Real-time observation of conformational switching in single conjugated polymer chains. SCIENCE ADVANCES 2018; 4:eaao5786. [PMID: 29487904 PMCID: PMC5817931 DOI: 10.1126/sciadv.aao5786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/22/2018] [Indexed: 05/30/2023]
Abstract
Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.
Collapse
Affiliation(s)
- Francisco Tenopala-Carmona
- Organic Semiconductor Centre, Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
| | - Stephanie Fronk
- Department of Materials and Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Guillermo C. Bazan
- Department of Materials and Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
| | - J. Carlos Penedo
- Organic Semiconductor Centre, Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
| |
Collapse
|
5
|
Easter QT, Blum SA. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angew Chem Int Ed Engl 2017; 56:13772-13775. [DOI: 10.1002/anie.201708284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Suzanne A. Blum
- Department of Chemistry; University of California, Irvine; Irvine CA 92617 USA
| |
Collapse
|
6
|
Easter QT, Blum SA. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92617 USA
| |
Collapse
|
7
|
Kitagawa K, Blum SA. Structure–Reactivity Studies of Intermediates for Mechanistic Information by Subensemble Fluorescence Microscopy. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhiro Kitagawa
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| |
Collapse
|
8
|
Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Optical Super-Resolution Imaging of Surface Reactions. Chem Rev 2017; 117:7510-7537. [DOI: 10.1021/acs.chemrev.6b00673] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Chen
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Bin Dong
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuangcai Chen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Fei Zhao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaodong Cheng
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Seungah Lee
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Peng Zhang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Dahak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Weilin Xu
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ning Fang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
9
|
Feng C, Easter QT, Blum SA. Structure–Reactivity Studies, Characterization, and Transformation of Intermediates by Lithium Chloride in the Direct Insertion of Alkyl and Aryl Iodides to Metallic Zinc Powder. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Feng
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
10
|
Halter O, Plenio H. Fluorescence resonance energy transfer (FRET) for the verification of dual gold catalysis. Chem Commun (Camb) 2017; 53:12461-12464. [DOI: 10.1039/c7cc07018g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two gold complexes with different bodipy-tagged N-heterocyclic carbene ligands, which are a potential FRET pair, were synthesized. It was shown, that the formation of dinuclear intermediates in alkyne transformations (“dual gold catalysis”) are characterized by a FRET signal.
Collapse
Affiliation(s)
- O. Halter
- Organometallic Chemistry
- 64287 Darmstadt
- Germany
| | - H. Plenio
- Organometallic Chemistry
- 64287 Darmstadt
- Germany
| |
Collapse
|
11
|
Halter O, Vasiuta R, Fernández I, Plenio H. Systematic Modulation of the Fluorescence Brightness in Boron-Dipyrromethene (BODIPY)-TaggedN-Heterocyclic Carbene (NHC)-Gold-Thiolates. Chemistry 2016; 22:18066-18072. [DOI: 10.1002/chem.201604122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Oliver Halter
- Organometallic Chemistry; TU Darmstadt; Alarich-Weiss-Str. 12 64287 Darmstadt Germany
| | - Roman Vasiuta
- Organometallic Chemistry; TU Darmstadt; Alarich-Weiss-Str. 12 64287 Darmstadt Germany
| | - Israel Fernández
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Herbert Plenio
- Organometallic Chemistry; TU Darmstadt; Alarich-Weiss-Str. 12 64287 Darmstadt Germany
| |
Collapse
|
12
|
Feng C, Cunningham DW, Easter QT, Blum SA. Role of LiCl in Generating Soluble Organozinc Reagents. J Am Chem Soc 2016; 138:11156-9. [DOI: 10.1021/jacs.6b08465] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chao Feng
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Drew W. Cunningham
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Quinn T. Easter
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Wirtz M, Grüter A, Rebmann P, Dier T, Volmer DA, Huch V, Jung G. Two-color emissive probes for click reactions. Chem Commun (Camb) 2015; 50:12694-7. [PMID: 25200167 DOI: 10.1039/c4cc05288a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(I)-catalyzed azide-alkyne cyclization (CuAAC) is the paradigmatic click reaction of continuous interest. Especially fluorogenic and FRET probes have become indispensable tools for life sciences. Here, we present a fluorescent alkyne for monitoring CuAAC, which undergoes a bathochromic shift upon reaction. Application in single-molecule and catalysis research is foreseen.
Collapse
Affiliation(s)
- Marcel Wirtz
- Biophysical Chemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hensle EM, Esfandiari NM, Lim SG, Blum SA. BODIPY Fluorophore Toolkit for Probing Chemical Reactivity and for Tagging Reactive Functional Groups. European J Org Chem 2014. [DOI: 10.1002/ejoc.201400052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Blum SA. Location change method for imaging chemical reactivity and catalysis with single-molecule and -particle fluorescence microscopy. Phys Chem Chem Phys 2014; 16:16333-9. [DOI: 10.1039/c4cp00353e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat Chem 2014; 5:993-9. [PMID: 24256861 DOI: 10.1038/nchem.1800] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/08/2013] [Indexed: 12/19/2022]
Abstract
In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.
Collapse
|
17
|
Chen P, Zhou X, Andoy NM, Han KS, Choudhary E, Zou N, Chen G, Shen H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem Soc Rev 2014; 43:1107-17. [DOI: 10.1039/c3cs60215j] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Hensle EM, Blum SA. Phase Separation Polymerization of Dicyclopentadiene Characterized by In Operando Fluorescence Microscopy. J Am Chem Soc 2013; 135:12324-8. [DOI: 10.1021/ja405283k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Eva M. Hensle
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
19
|
Dutta S, Flottmann B, Heilemann M, Mokhir A. Hybridization and reaction-based fluorogenic nucleic acid probes. Chem Commun (Camb) 2012; 48:9664-6. [DOI: 10.1039/c2cc33827k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Esfandiari NM, Wang Y, Bass JY, Blum SA. Deconvoluting Subensemble Chemical Reaction Kinetics of Platinum–Sulfur Ligand Exchange Detected with Single-Molecule Fluorescence Microscopy. Inorg Chem 2011; 50:9201-3. [DOI: 10.1021/ic2007952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Melody Esfandiari
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yong Wang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jonathan Y. Bass
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
21
|
NASCA Microscopy: Super-Resolution Mapping of Chemical Reaction Centers. SPRINGER SERIES ON FLUORESCENCE 2011. [DOI: 10.1007/4243_2011_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|