1
|
Ouellette ET, Magdalenski JS, Bergman RG, Arnold J. Applications of Low-Valent Transition Metalates: Development of a Reactive Noncarbonyl Rhenium(I) Anion. Acc Chem Res 2022; 55:783-793. [PMID: 35171568 DOI: 10.1021/acs.accounts.2c00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-valent transition metalates─anionic, electronic-rich organometallic complexes─comprise a class of highly reactive chemical reagents that find integral applications in organic synthesis, small-molecule activation, transient species stabilization, and M-E bond formation, among others. The inherent reactivity of such electron-rich metal centers has necessitated the widespread use of strong backbonding ligands, particularly carbonyls, to aid in the isolation and handling of metalate reagents, albeit sometimes at the expense of partially masking their full reactivity. However, recent synthetic explorations into transition-metalate complexes devoid of archetypic back-bonding ligands have led to the discovery of highly reactive metalates capable of performing a variety of novel chemical transformations.Building on our group's long-standing interest in reactive organometallic species, a series of rational progressions in early-to-middle transition-metal chemistry ultimately led to our isolation of a rhenium(I) β-diketiminate cyclopentadienide metalate that displays exceptional reactivity. We have found this Re(I) metalate to be capable of small-molecule activation; notably, the complex reversibly binds dinitrogen in solution and can be utilized to trap N2 for the synthesis of functionalized diazenido species. By employing isolobal analogues to N2 (CO and RNC), we were able to thoroughly monitor the mechanism of activation and conclude that the metalate's sodium counterion plays an integral role in promoting dinitrogen activation through a novel side-on interaction. The Re(I) metalate is also used in forming a variety of M-E bonds, including a series of uncommon rhenium-tetrylene (Si, Ge, and Sn) complexes that display varying degrees of multiple bonding. These metal tetrylenes act to highlight deviations in chemical properties within the group 14 elements. Our metalate's utility also applies to metal-metal bond formation, as demonstrated through the synthesis of a heterotetrametallic rhenium-zinc dimer. In this reaction, the Re(I) metalate performs a dual role as a reductant and metalloligand to stabilize a transient Zn22+ core fragment. Finally, the metalate displays unique reactivity with uranium(III) to yield the first transition metal-actinide inverse-sandwich bonds, in this case with three rhenium fragments bound through their Cp moieties surrounding the uranium center. Notably, throughout these endeavors we demonstrate that the metalate displays reactivity at multiple locations, including directly at the rhenium metal center, at a Cp carbon, through a Cp-sandwich mode, or through reversibly bound dinitrogen.Overall, the rhenium(I) metalate described herein demonstrates utility in diverse applications: small-molecule activation, the stabilization of reduced and/or unstable species, and the formation of unconventional M-E/M-M bonds or heterometallic complexes. Moving forward, we suggest that the continued discovery of noncarbonyl, electron-rich transition-metal anions featuring new or unconventional ligands should produce additional reactive organometallic species capable of stabilizing unique structural motifs and performing novel and unusual chemical transformations.
Collapse
Affiliation(s)
- Erik T. Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julian S. Magdalenski
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Ouellette ET, Carpentier A, Joseph Brackbill I, Lohrey TD, Douair I, Maron L, Bergman RG, Arnold J. σ or π? Bonding interactions in a series of rhenium metallotetrylenes. Dalton Trans 2021; 50:2083-2092. [PMID: 33481968 DOI: 10.1039/d1dt00129a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt metathesis reactions between a low-valent rhenium(i) complex, Na[Re(η5-Cp)(BDI)] (BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(NtBu)2] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(NtBu)2])(η5-Cp)(BDI) (E = Si (1a), Ge (2), Sn (4)) with varying extents of Re-E multiple bonding. Whereas the rhenium-stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re-E single bond, the rhenium-silylene (1a) and -germylene (2) both engage in π-interactions to form short Re-E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η5-Cp)(BDI)] and SiCl[PhC(NtBu)2], as manipulation of reaction conditions led to isolation of an unusual rhenium-silane, (BDI)Re(μ-η5:η1-C5H4)(SiH[PhC(NtBu)2]) (1b) and a dinitrogen bridged rhenium-silylene, (η5-Cp)(BDI)Re(μ-N2)Si[PhC(NtBu)2] (1c), in addition to 1a. Finally, the reaction of Na[Re(η5-Cp)(BDI)] with GeCl2·dioxane led to a rare μ2-tetrelido complex, μ2-Ge[Re(η5-Cp)(BDI)]2 (3). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations.
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Ambre Carpentier
- LPCNO, Université de Toulouse, INAS Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Iskander Douair
- LPCNO, Université de Toulouse, INAS Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INAS Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
3
|
Abstract
This review highlights the use of the bisphosphine ligand group in homogeneous catalysis.
Collapse
|
4
|
Affiliation(s)
- Joyce Y. Corey
- Department of Chemistry and
Biochemistry, University of Missouri—St. Louis, One University
Drive, St. Louis, Missouri 63121, United States
| |
Collapse
|
5
|
Deka H, Ghosh S, Saha S, Gogoi K, Mondal B. Effect of ligand denticity on the nitric oxide reactivity of cobalt(ii) complexes. Dalton Trans 2016; 45:10979-88. [DOI: 10.1039/c6dt01169a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO reactivity of three Co(ii) complexes, 1, 2 and 3 have been studied in degassed methanol solution. The complexes differ from each other in terms of denticity and flexibility of the ligand fameworks. Complex 1 undergoes reductive nitrosylation of the metal ion; 2 results in corresponding [CoIII(NO−)] complex; whereas 3 does not react with NO.
Collapse
Affiliation(s)
- Hemanta Deka
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Somnath Ghosh
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Soumen Saha
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Kuldeep Gogoi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Biplab Mondal
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| |
Collapse
|
6
|
Kozhukh J, Lippard SJ. Influence of Tetraazamacrocyclic Ligands on the Nitric Oxide Reactivity of their Cobalt(II) Complexes. J Am Chem Soc 2012; 134:11120-3. [DOI: 10.1021/ja305011g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Kozhukh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
7
|
Borah M, Bhattacharyya PK, Das P. Iron carbonyl complex containing bis[2-(diphenylphosphino)phenyl]ether enhancing efficiency in the palladium-catalyzed Suzuki-Miyaura reaction. Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Malabika Borah
- Department of Chemistry; Dibrugarh University; Dibrugarh; 786004; Assam; India
| | | | - Pankaj Das
- Department of Chemistry; Dibrugarh University; Dibrugarh; 786004; Assam; India
| |
Collapse
|