1
|
Li JG, Qiu BB, Jiang H, Song MP, Gong JF. Chiral PCN pincer Ni(ii) complex-catalyzed asymmetric hydrophosphination of 2-alkenoylpyridines with diphenylphosphine. RSC Adv 2025; 15:15904-15918. [PMID: 40370842 PMCID: PMC12076071 DOI: 10.1039/d5ra01336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Herein, nine chiral PCN pincer Ni(ii) complexes 2 with (phosphine)-(imidazoline) ligands and two complexes 5a and 5b bearing (phosphinite)-(imidazoline) ligands were successfully synthesized via a "one-pot" phosphination(phosphorylation)/nickelation reaction. All the new complexes were characterized using elemental analysis and NMR spectroscopy. Additionally, the molecular structures of complexes 2a, 2e and 5a were elucidated using X-ray single-crystal diffraction analysis. Their efficacy as enantioselective catalysts for the asymmetric hydrophosphination of 2-alkenoylpyridines was investigated. Using 5 mol% of complex 2a as the catalyst in the presence of Et3N, various 2-alkenoylpyridines reacted smoothly with diphenylphosphine to afford structurally diverse chiral pyridine-containing phosphine derivatives in yields up to 99% with an enantioselectivity up to 98% ee. Further transformations of the catalysis products were also studied.
Collapse
Affiliation(s)
- Jin-Ge Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University Zhengzhou 450001 China
| | - Bing-Bo Qiu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University Zhengzhou 450001 China
| | - Hui Jiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University Zhengzhou 450001 China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University Zhengzhou 450001 China
| | - Jun-Fang Gong
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Masaeli SE, Teimouri M, Adhikari B, Attarroshan M, Akin JW, Raju S, Stokes SL, Emerson JP. Sodium Trifluoroacetate mediated Copper-Catalyzed aza-Michael addition of α,β-unsaturated olefins with aromatic amines. Tetrahedron Lett 2023; 122:154520. [PMID: 37694227 PMCID: PMC10486139 DOI: 10.1016/j.tetlet.2023.154520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We present a sodium trifluoroacetate (CF3CO2Na) mediated copper-catalyzed aza-Michael addition of aromatic amines with activated olefins under mild, aqueous reaction conditions. This simplistic protocol employs a copper catalyst (10 mol%) and water as solvent. This transformation occurs precisely with aromatic substituted amines containing both electron-donating (EDG) and electron-withdrawing (EWG) groups. A broad range of substrates were tested under the optimized conditions, which are producing good to moderate yields.
Collapse
Affiliation(s)
- S. Erfan Masaeli
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Mohsen Teimouri
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | | | | | - James W. Akin
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, MS 39762, USA
| |
Collapse
|
4
|
Wang C, Yin P, Dai YH, Ye J, Duan WL. Pincer-nickel catalyzed asymmetric addition of HPPh2 to enones toward the synthesis of chiral phosphines. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Dai Q, Liu L, Zhang J. Palladium/Xiao‐Phos‐Catalyzed Kinetic Resolution of
sec
‐Phosphine Oxides by
P
‐Benzylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Dai
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200241 P. R. China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
6
|
Dai Q, Liu L, Zhang J. Palladium/Xiao-Phos-Catalyzed Kinetic Resolution of sec-Phosphine Oxides by P-Benzylation. Angew Chem Int Ed Engl 2021; 60:27247-27252. [PMID: 34672416 DOI: 10.1002/anie.202111957] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Indexed: 02/06/2023]
Abstract
P-stereogenic tert- and sec-phosphines have wide applications in asymmetric catalysis, materials, and pharmaceutical chemistry, however, their practical synthesis still constitutes a significant challenge. Herein, a successful kinetic resolution of rac-secondary phosphine oxides via the enantioselective P-benzylation process catalyzed by the palladium/Xiao-Phos was designed. Both tert- and sec-phosphine oxides were delivered in good yield and excellent enantiopurity (selectivity factor up to 226.1). The appealing synthetic utilities are further demonstrated by the facile preparation of several valuable P-chiral compounds, precursors of bidentate ligands, as well as transition metal complexes.
Collapse
Affiliation(s)
- Qiang Dai
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
7
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
8
|
Wang C, Huang K, Ye J, Duan WL. Asymmetric Synthesis of P-Stereogenic Secondary Phosphine-Boranes by an Unsymmetric Bisphosphine Pincer-Nickel Complex. J Am Chem Soc 2021; 143:5685-5690. [PMID: 33835786 DOI: 10.1021/jacs.1c02772] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first highly enantioselective catalytic synthesis of P-stereogenic secondary phosphine-boranes was realized by the asymmetric addition of primary phosphine to electron-deficient alkenes with a newly developed unsymmetric bisphosphine (PCP') pincer-nickel complex. Various P-stereogenic secondary phosphine-boranes were obtained in 57-92% yields with up to 99% ee and >20:1 dr. The follow-up alkylation upon P-C bond formation with alkyl halides provided a practical way to access P-chiral compounds with diverse functional groups.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Kesheng Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Jie Ye
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| |
Collapse
|
9
|
Foo CQ, Sadeer A, Li Y, Pullarkat SA, Leung PH. Access to C-Stereogenic PN(sp2)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ce Qing Foo
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Abdul Sadeer
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yongxin Li
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Sumod A. Pullarkat
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Pak-Hing Leung
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
10
|
Jagtap RA, Ankade SB, Gonnade RG, Punji B. Achiral and chiral NNN-pincer nickel complexes with oxazolinyl backbones: application in transfer hydrogenation of ketones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NNN-based achiral and chiral (oxazolinyl)amido-pincer nickel complexes are developed and employed for the catalytic transfer hydrogenation of ketones.
Collapse
Affiliation(s)
- Rahul A. Jagtap
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| | - Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| | - Rajesh G. Gonnade
- Centre for Material Characterization
- CSIR–National Chemical Laboratory
- Pune – 411 008
- India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab
- Chemical Engineering Division
- CSIR–National Chemical Laboratory (CSIR–NCL)
- Dr Homi Bhabha Road
- Pune – 411 008
| |
Collapse
|
11
|
Mangin LP, Michaud G, Zargarian D. A Wacker-Type Strategy for the Synthesis of Unsymmetrical POC sp3E-Nickel Pincer Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Loïc P. Mangin
- Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Michaud
- Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Davit Zargarian
- Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
12
|
Scheerder AR, Lutz M, Broere DLJ. Unexpected reactivity of a PONNOP 'expanded pincer' ligand. Chem Commun (Camb) 2020; 56:8198-8201. [PMID: 32395727 DOI: 10.1039/d0cc02166k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis, characterization and coordination chemistry of a new naphthyridine-derived phosphinite PONNOP expanded pincer ligand. As envisioned, the dinucleating ligand readily binds two copper(i) centers in close proximity, but undergoes an unexpected rearrangement in the presence of nickel(ii) salts to form an interesting PONNP pincer platform.
Collapse
Affiliation(s)
- Arthur R Scheerder
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | | | | |
Collapse
|
13
|
Layek S, Agrahari B, Kumar A, Dege N, Pathak DD. Synthesis and X-ray crystal structures of three new nickel(II) complexes of benzoylhydrazones: Catalytic applications in the synthesis of 2-arylbenzoxazoles. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Xiang Y, Ge Q, Wu S, Zheng X, Yang Z. Synthesis and application in asymmetric catalysis of P-stereogenic pincer–metal complexes. RSC Adv 2020; 10:9563-9578. [PMID: 35497199 PMCID: PMC9050166 DOI: 10.1039/d0ra00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
P-stereogenic pincer: synthesis and application in asymmetric catalysis.
Collapse
Affiliation(s)
- Yijun Xiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Qianyi Ge
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Shulei Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| |
Collapse
|
15
|
Catalytic Conversion of Nitriles by Metal Pincer Complexes. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Tay WS, Lu Y, Yang XY, Li Y, Pullarkat SA, Leung PH. Catalytic and Mechanistic Developments of the Nickel(II) Pincer Complex-Catalyzed Hydroarsination Reaction. Chemistry 2019; 25:11308-11317. [PMID: 31293004 DOI: 10.1002/chem.201902138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 01/08/2023]
Abstract
Synthetic challenges have significantly slowed the development of the catalytic asymmetric hydroarsination reaction despite it being a highly attractive C-As bond formation methodology. In addition, there is a poor understanding of the main reaction steps in such reactions which limit further development in the field. Herein, key intermediates of the hydroarsination reaction catalyzed by a PCP NiII -Cl pincer complex are presented upon investigating the reaction with DFT calculations, conductivity measurements, NMR spectroscopy, and catalytic screening. The novel Ni-Cl-As interaction proposed was then contrasted against known NiII -catalyzed hydrophosphination reactions to highlight dissimilarities between them even though P and As share a close group relationship. Lastly, the asymmetric hydroarsination of nitroolefins was further developed to furnish a library of chiral organoarsines in up to 99 % yield and 80 % ee under mild conditions (-20 °C to RT) between 5 to 210 mins.
Collapse
Affiliation(s)
- Wee Shan Tay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Xiang-Yuan Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Sumod A Pullarkat
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Pak-Hing Leung
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
17
|
Agrahari B, Layek S, Ganguly R, Dege N, Pathak DD. Synthesis, characterization and single crystal X-ray studies of pincer type Ni(II)-Schiff base complexes: Application in synthesis of 2-substituted benzimidazoles. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Huber R, Passera A, Mezzetti A. Which future for stereogenic phosphorus? Lessons from P* pincer complexes of iron(ii). Chem Commun (Camb) 2019; 55:9251-9266. [DOI: 10.1039/c9cc03910d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Locking the chelate conformation and supplying steric bulk for enantiodiscrimination: a tough task for stereogenic phosphorus in multidentate ligands.
Collapse
Affiliation(s)
- Raffael Huber
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| | - Alessandro Passera
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| | - Antonio Mezzetti
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| |
Collapse
|
19
|
Subramaniyan V, Dutta B, Govindaraj A, Mani G. Facile synthesis of Pd(ii) and Ni(ii) pincer carbene complexes by the double C–H bond activation of a new hexahydropyrimidine-based bis(phosphine): catalysis of C–N couplings. Dalton Trans 2019; 48:7203-7210. [DOI: 10.1039/c8dt03413c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new hexahydropyrimidine-based NHC proligand undergoes facile double C–H bond activation to give Pd(ii) and Ni(ii) NHC pincer cationic complexes. The Pd complex catalyzes C–N cross couplings very efficiently.
Collapse
Affiliation(s)
| | - Bidisa Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India 721 302
| | - Anbarasu Govindaraj
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India 721 302
| | - Ganesan Mani
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India 721 302
| |
Collapse
|
20
|
Zheng K, Liu X, Feng X. Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. Chem Rev 2018; 118:7586-7656. [PMID: 30047721 DOI: 10.1021/acs.chemrev.7b00692] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metal-catalyzed asymmetric conjugate addition (ACA) reaction has emerged as a general and powerful approach for the construction of optically active compounds and is among the most significant and useful reactions in synthetic organic chemistry. In recent years, great progress has been made in this area with the use of various chiral metal complexes based on different chiral ligands. This review provides comprehensive and critical information on the enantioselective 1,4-conjugate addition of nonorganometallic (soft) nucleophiles and their importance in synthetic applications. The literature is covered from the last 10 years, and a number of examples from before 2007 are included as background information. The review is divided into multiple parts according to the type of nucleophile involved in the reaction (such as C-, B-, O-, N-, S-, P-, and Si-centered nucleophiles) and metal catalyst systems used.
Collapse
Affiliation(s)
- Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
21
|
Gibbons SK, Xu Z, Hughes RP, Glueck DS, Rheingold AL. Chiral Bis(Phospholane) PCP Pincer Complexes: Synthesis, Structure, and Nickel-Catalyzed Asymmetric Phosphine Alkylation. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah K. Gibbons
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zhiming Xu
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Russell P. Hughes
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - David S. Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Arnold L. Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Huang MH, Hu J, Huang KW. Extending the Second-Generation Phosphorus-Nitrogen PN3
-Pincer Ligand Family through Ligand Post-Modification. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mei-Hui Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| | - Jinsong Hu
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
23
|
A new and convenient approach for the synthesis of P-stereogenic intermediates bearing a tert-butyl(methyl)phosphino group. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2923-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Imamoto T. Searching for Practically Useful P-Chirogenic Phosphine Ligands. CHEM REC 2016; 16:2655-2669. [DOI: 10.1002/tcr.201600098] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tsuneo Imamoto
- Organic R&D Department; Nippon Chemical Industrial Co., Ltd; Koto-ku Tokyo 136-8515 Japan
- Department of Chemistry, Graduate School of Science; Chiba University, Yayoi-cho; Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
25
|
Phelan JP, Ellman JA. Conjugate addition-enantioselective protonation reactions. Beilstein J Org Chem 2016; 12:1203-28. [PMID: 27559372 PMCID: PMC4979737 DOI: 10.3762/bjoc.12.116] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals.
Collapse
Affiliation(s)
- James P Phelan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Patel UN, Pandey DK, Gonnade RG, Punji B. Synthesis of Quinoline-Based NNN-Pincer Nickel(II) Complexes: A Robust and Improved Catalyst System for C–H Bond Alkylation of Azoles with Alkyl Halides. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00201] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulhas N. Patel
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering
Division, and ‡Centre for Material Characterization, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Dilip K. Pandey
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering
Division, and ‡Centre for Material Characterization, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Rajesh G. Gonnade
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering
Division, and ‡Centre for Material Characterization, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Benudhar Punji
- Organometallic Synthesis
and Catalysis Group, Chemical Engineering
Division, and ‡Centre for Material Characterization, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| |
Collapse
|
27
|
Hu Q, Chen J, Zhang Z, Liu Y, Zhang W. Rh-Catalyzed One-Pot Sequential Asymmetric Hydrogenation of α-Dehydroamino Ketones for the Synthesis of Chiral Cyclic trans-β-Amino Alcohols. Org Lett 2016; 18:1290-3. [DOI: 10.1021/acs.orglett.6b00212] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qiupeng Hu
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jianzhong Chen
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenfeng Zhang
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yangang Liu
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- School of Pharmacy and ‡School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
28
|
Murugesan S, Kirchner K. Non-precious metal complexes with an anionic PCP pincer architecture. Dalton Trans 2016; 45:416-39. [PMID: 26608262 DOI: 10.1039/c5dt03778f] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This perspective article provides an overview of the advancements in the field of non-precious metal complexes featuring anionic PCP pincer ligands with the inclusion of aliphatic systems. It covers research from the beginning in 1976 until late 2015 and provides a summary of key developments in this area, which is, to date, limited to the metals nickel, cobalt, iron, and molybdenum. While the research in nickel PCP complexes is already quite extensive, the chemistry of cobalt, iron, and molybdenum PCP complexes is comparatively sparse. With other non-precious metals such as copper, manganese, chromium or vanadium no PCP complexes are known as yet. In the case of nickel PCP complexes already many catalytic applications such as Suzuki-Miyaura coupling, C-S cross coupling, Kharasch and Michael additions, hydrosilylation of aldehydes and ketones, cyanomethylation of aldehydes, and hydroamination of nitriles were reported. While iron PCP complexes were found to be active catalysts for the hydrosilylation of aldehydes and ketones as well as the dehydrogenation of ammonia-borane, cobalt PCP complexes were not applied to any catalytic reactions. Surprisingly, only one molybdenum PCP complex is reported, which was capable of cleaving dinitrogen to give a nitride complex. This perspective underlines that the combination of cheap and abundant metals such as nickel, cobalt, and iron with PCP pincer ligands may result in the development of novel, versatile, and efficient catalysts for atom-efficient catalytic reactions.
Collapse
Affiliation(s)
- Sathiyamoorthy Murugesan
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria.
| |
Collapse
|
29
|
Dutartre M, Bayardon J, Jugé S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem Soc Rev 2016; 45:5771-5794. [DOI: 10.1039/c6cs00031b] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review reports the best stereoselective or asymmetric syntheses, the most efficient P*-building blocks and functionalisation of P-chirogenic compounds, in the light of chiral phosphorus compound applications.
Collapse
Affiliation(s)
- Mathieu Dutartre
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB-StéréochIM)
- UMR CNRS 6302
- 21078 Dijon Cedex
- France
| | - Jérôme Bayardon
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB-StéréochIM)
- UMR CNRS 6302
- 21078 Dijon Cedex
- France
| | - Sylvain Jugé
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB-StéréochIM)
- UMR CNRS 6302
- 21078 Dijon Cedex
- France
| |
Collapse
|
30
|
Adhikary A, Krause JA, Guan H. Configurational Stability and Stereochemistry of P-Stereogenic Nickel POCOP-Pincer Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anubendu Adhikary
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|