1
|
Nagy K, Sándor P, Vékey K, Drahos L, Révész Á. The Enzyme Effect: Broadening the Horizon of MS Optimization to Nontryptic Digestion in Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:299-308. [PMID: 39803703 PMCID: PMC11808764 DOI: 10.1021/jasms.4c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal. The success of peptide and protein identifications relies on the information content of MS/MS spectra, influenced by collision energy in collision-induced dissociation. We investigated this by conducting LC-MS/MS measurements with different enzymes, including trypsin, Arg-C, Glu-C, Asp-N, and chymotrypsin, at varying collision energies. We analyzed peptide scores for thousands of peptides and determined optimal collision energy (CE) values. Our results showed a linear m/z dependence for all enzymes, with Glu-C, Asp-N, and chymotrypsin requiring significantly lower energies than trypsin and Arg-C. We proposed a tailored CE selection method for these alternative enzymes, applying ca. 20% lower energy compared to tryptic peptides. This would result in a 10-15 eV decrease on a Bruker QTof instrument and a 5-6 NCE% (normalized collision energy) difference on an Orbitrap. The optimized method improved bottom-up proteomics performance by 8-32%, as measured by peptide identification and sequence coverage. The different trends in fragmentation behavior were linked to the effects of C-terminal basic amino acids for Arg-C and trypsin, stabilizing y fragment ions. This optimized method boosts the performance and provides insight into the impact of enzyme specificity. Data sets are available in the MassIVE repository (MSV000095066).
Collapse
Affiliation(s)
- Kinga Nagy
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Faculty of Science,
Institute of Chemistry, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Péter Sándor
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - Károly Vékey
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - László Drahos
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ágnes Révész
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Towards understanding the formation of internal fragments generated by collisionally activated dissociation for top-down mass spectrometry. Anal Chim Acta 2022; 1194:339400. [PMID: 35063165 PMCID: PMC9088748 DOI: 10.1016/j.aca.2021.339400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022]
Abstract
Top-down mass spectrometry (TD-MS) generates fragment ions that returns information on the polypeptide amino acid sequence. In addition to terminal fragments, internal fragments that result from multiple cleavage events can also be formed. Traditionally, internal fragments are largely ignored due to a lack of available software to reliably assign them, mainly caused by a poor understanding of their formation mechanism. To accurately assign internal fragments, their formation process needs to be better understood. Here, we applied a statistical method to compare fragmentation patterns of internal and terminal fragments of peptides and proteins generated by collisionally activated dissociation (CAD). Internal fragments share similar fragmentation propensities with terminal fragments (e.g., enhanced cleavages N-terminal to proline and C-terminal to acidic residues), suggesting that their formation follows conventional CAD pathways. Internal fragments should be generated by subsequent cleavages of terminal fragments and their formation can be explained by the well-known mobile proton model. In addition, internal fragments can be coupled with terminal fragments to form complementary product ions that span the entire protein sequence. These enhance our understanding of internal fragment formation and can help improve sequencing algorithms to accurately assign internal fragments, which will ultimately lead to more efficient and comprehensive TD-MS analysis of proteins and proteoforms.
Collapse
|
3
|
Peeters MKR, Baggerman G, Gabriels R, Pepermans E, Menschaert G, Boonen K. Ion Mobility Coupled to a Time-of-Flight Mass Analyzer Combined With Fragment Intensity Predictions Improves Identification of Classical Bioactive Peptides and Small Open Reading Frame-Encoded Peptides. Front Cell Dev Biol 2021; 9:720570. [PMID: 34604223 PMCID: PMC8484717 DOI: 10.3389/fcell.2021.720570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Bioactive peptides exhibit key roles in a wide variety of complex processes, such as regulation of body weight, learning, aging, and innate immune response. Next to the classical bioactive peptides, emerging from larger precursor proteins by specific proteolytic processing, a new class of peptides originating from small open reading frames (sORFs) have been recognized as important biological regulators. But their intrinsic properties, specific expression pattern and location on presumed non-coding regions have hindered the full characterization of the repertoire of bioactive peptides, despite their predominant role in various pathways. Although the development of peptidomics has offered the opportunity to study these peptides in vivo, it remains challenging to identify the full peptidome as the lack of cleavage enzyme specification and large search space complicates conventional database search approaches. In this study, we introduce a proteogenomics methodology using a new type of mass spectrometry instrument and the implementation of machine learning tools toward improved identification of potential bioactive peptides in the mouse brain. The application of trapped ion mobility spectrometry (tims) coupled to a time-of-flight mass analyzer (TOF) offers improved sensitivity, an enhanced peptide coverage, reduction in chemical noise and the reduced occurrence of chimeric spectra. Subsequent machine learning tools MS2PIP, predicting fragment ion intensities and DeepLC, predicting retention times, improve the database searching based on a large and comprehensive custom database containing both sORFs and alternative ORFs. Finally, the identification of peptides is further enhanced by applying the post-processing semi-supervised learning tool Percolator. Applying this workflow, the first peptidomics workflow combined with spectral intensity and retention time predictions, we identified a total of 167 predicted sORF-encoded peptides, of which 48 originating from presumed non-coding locations, next to 401 peptides from known neuropeptide precursors, linked to 66 annotated bioactive neuropeptides from within 22 different families. Additional PEAKS analysis expanded the pool of SEPs on presumed non-coding locations to 84, while an additional 204 peptides completed the list of peptides from neuropeptide precursors. Altogether, this study provides insights into a new robust pipeline that fuses technological advancements from different fields ensuring an improved coverage of the neuropeptidome in the mouse brain.
Collapse
Affiliation(s)
- Marlies K. R. Peeters
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Ralf Gabriels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Gerben Menschaert
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
- OHMX.bio, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| |
Collapse
|
4
|
Schmitt ND, Berger JM, Conway JB, Agar JN. Increasing Top-Down Mass Spectrometry Sequence Coverage by an Order of Magnitude through Optimized Internal Fragment Generation and Assignment. Anal Chem 2021; 93:6355-6362. [DOI: 10.1021/acs.analchem.0c04670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Joshua M. Berger
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeremy B. Conway
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Wilburn DB, Richards AL, Swaney DL, Searle BC. CIDer: A Statistical Framework for Interpreting Differences in CID and HCD Fragmentation. J Proteome Res 2021; 20:1951-1965. [PMID: 33729787 DOI: 10.1021/acs.jproteome.0c00964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Library searching is a powerful technique for detecting peptides using either data independent or data dependent acquisition. While both large-scale spectrum library curators and deep learning prediction approaches have focused on beam-type CID fragmentation (HCD), resonance CID fragmentation remains a popular technique. Here we demonstrate an approach to model the differences between HCD and CID spectra, and present a software tool, CIDer, for converting libraries between the two fragmentation methods. We demonstrate that just using a combination of simple linear models and basic principles of peptide fragmentation, we can explain up to 43% of the variation between ions fragmented by HCD and CID across an array of collision energy settings. We further show that in some circumstances, searching converted CID libraries can detect more peptides than searching existing CID libraries or libraries of machine learning predictions from FASTA databases. These results suggest that leveraging information in existing libraries by converting between HCD and CID libraries may be an effective interim solution while large-scale CID libraries are being developed.
Collapse
Affiliation(s)
- Damien B Wilburn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California 94158, United States.,J. David Gladstone Institutes, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California 94158, United States.,J. David Gladstone Institutes, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Brian C Searle
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
6
|
FPTMS: Frequency-based approach to identify the peptide from the low-energy collision-induced dissociation tandem mass spectra. J Proteomics 2021; 235:104116. [PMID: 33453436 DOI: 10.1016/j.jprot.2021.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
Abstract
The database search method is a widely accepted method to assign a peptide to the tandem mass spectra. In this study, a new flexible method- FPTMS is introduced to interpret the tandem mass spectra with the known peptide sequences in a protein database. Here the frequency of occurrence of fragment ion peaks extracted from the extensive spectral library is used to predict the theoretical tandem mass spectra of the peptides. The dot product scoring and windowed-xcorr scoring methods were implemented to score the experimental spectrum against the theoretical peptide spectra. Windowed-xcorr is introduced to tackle the mass errors and the cleavage position of the fragmentation process. The new method with windowed-xcorr shows an improved identification rate compared to the existing search engines Crux-Tide and X!Tandem at 1% False Discovery Rate (FDR) for the dataset considered in this study. SIGNIFICANCE: Identifying or sequencing of the peptide from tandem mass spectra is an important application in mass spectrometry-based proteomics. Collision-induced dissociation (CID) fragmentation spectra have been widely used to develop a peptide identification algorithm using database search strategy. CID fragmentation behavior is a complex process and found to have dependency on the sequences of peptide, charge state, and residue content. The inclusion of more features of peptide fragmentation behavior and adaptable scoring algorithm improves the efficiency of the peptide identification algorithm.
Collapse
|
7
|
Dodt K, Driessen MD, Lamer S, Schlosser A, Lühmann T, Meinel L. A Complete and Versatile Protocol: Decoration of Cell-Derived Matrices with Mass-Encoded Peptides for Multiplexed Protease Activity Detection. ACS Biomater Sci Eng 2020; 6:6598-6617. [PMID: 33320595 DOI: 10.1021/acsbiomaterials.0c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article provides guidance toward a platform technology for monitoring enzyme activity within the extracellular matrix (ECM) assessed by quantifying reporters secreted into the cell culture supernatant and analyzed by tandem mass spectrometry. The reporters are enzymatically and covalently bound to the ECM by transglutaminases (TG) using the peptide sequence of human insulin-like growth factor I's (IGF-I) D-domain which is known to be bound to the ECM by transglutaminase. The IGF-I D-domain sequence is followed by a peptide sequence cleaved by the intended target protease. This protease-sensitive peptide sequence (PSS) is cleaved off the ECM and can be used to monitor target-enzyme activity by employing a downstream mass tag designed according to isobaric mass encoding strategies, i.e., the combination of isotopically labeled, heavy amino acids. Thereby, cleavage events are linked to the appearance of encoded mass tags, readily allowing multiplexing. This article presents the design and synthesis of these mass reporters. It further aims at detailing the search for peptide sequences responding to target proteases to facilitate future work on enzyme activity measurement for enzymatic activities of hitherto unknown enzymes. In conclusion, the goal of this article is to arm scientists interested in measurements of local enzymatic activities within the ECM with robust protocols and background knowledge.
Collapse
Affiliation(s)
- Katharina Dodt
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Marc D Driessen
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
8
|
Dodt K, Lamer S, Drießen M, Bölch S, Schlosser A, Lühmann T, Meinel L. Mass-Encoded Reporters Reporting Proteolytic Activity from within the Extracellular Matrix. ACS Biomater Sci Eng 2020; 6:5240-5253. [PMID: 33455273 DOI: 10.1021/acsbiomaterials.0c00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reporting matrix metalloproteinase (MMP) activity directly from the extracellular matrix (ECM) may provide critical insights to better characterize 2D and 3D cell culture model systems of inflammatory diseases and potentially leverage in vivo diagnosis. In this proof-of-concept study, we designed MMP-sensors, which were covalently linked onto the ECM by co-administration of the activated transglutaminase factor XIIIa (FXIIIa). Elements of the featured MMP-sensors are the D-domain of insulin-like growth factor I (IGF-I) through which co-administered FXIIIa covalently links the sensor to the ECM followed by an MMP sensitive peptide sequence and locally reporting on MMP activity, an isotopically labeled mass tag encoding for protease activity, and an affinity tag facilitating purification from fluids. All sensors come in identical pairs, other than the MMP sensitive peptide sequence, which is synthesized with l-amino acids or d-amino acids, the latter serving as internal standard. As a proof of concept for multiplexing, we successfully profiled two MMP-sensors with different MMP sensitive peptide sequences reporting MMP activity directly from an engineered 3D ECM. Future use may include covalently ECM bound diagnostic depots reporting MMP activity from inflamed tissues.
Collapse
Affiliation(s)
- Katharina Dodt
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Marc Drießen
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Sebastian Bölch
- Department for Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, Brettreichstrasse 11, 97074 Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
9
|
Steckel A, Borbély A, Uray K, Schlosser G. Quantification of the Effect of Citrulline and Homocitrulline Residues on the Collision-Induced Fragmentation of Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1744-1750. [PMID: 32559094 PMCID: PMC7590983 DOI: 10.1021/jasms.0c00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Posttranslational modifications of proteins like citrullination and carbamylation are associated with several diseases. Detailed analytical characterization of citrullinated and carbamylated proteins or peptides could be difficult due to the low concentration of the analytes in complex biological samples. High structural similarity and chemical behavior of citrullinated and carbamylated residues also pose a challenge. We previously reported the "citrulline effect" phenomenon that is manifested in the generation of intense y type ions originating from Cit-Zzz amide bond scissions in collision-induced dissociation tandem mass spectra of citrullinated tryptic peptides. In this study, we created a rigorous tryptic-like model system of both citrulline and homocitrulline-containing peptides that included appropriate and well-defined controls and fragment analogues to quantify the citrulline effect and investigate whether there is an effect for homocitrulline residues as well. Our results show that citrulline residues significantly increased fragmentation at their C-terminus relatively independent of the identity of the following amino acid. In comparison, homocitrulline residues displayed inconclusive results at the same energies. However, the strength of effects was dependent on collision energy and the position of citrulline and homocitrulline in the sequences. As newer software algorithms tend to observe structure-intensity relationships during annotation, this finding increases reliable identification of modified proteins/peptides.
Collapse
Affiliation(s)
- Arnold Steckel
- Hevesy György PhD School of Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
- MTA-ELTE Research Group of Peptide Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
- Department of Analytical Chemistry, ELTE
Eötvös Loránd University, Budapest 1117,
Hungary
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
- Department of Analytical Chemistry, ELTE
Eötvös Loránd University, Budapest 1117,
Hungary
- Phone: +36-1-372 2500/1415.
| |
Collapse
|
10
|
Ramachandran S, Thomas T. A Frequency-Based Approach to Predict the Low-Energy Collision-Induced Dissociation Fragmentation Spectra. ACS OMEGA 2020; 5:12615-12622. [PMID: 32548445 PMCID: PMC7288360 DOI: 10.1021/acsomega.9b03935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Peptide identification algorithms rely on the comparison between the experimental tandem mass spectrometry spectrum and the theoretical spectrum to identify a peptide from the tandem mass spectra. Hence, it is important to understand the fragmentation process and predict the tandem mass spectra for high-throughput proteomics research. In this study, a novel method was developed to predict the theoretical ion trap collision-induced dissociation (CID) tandem mass spectra of the singly, doubly, and triply charged tryptic peptides. The fragmentation statistics of the ion trap CID spectra were used to predict the theoretical tandem mass spectra of the peptide sequence. The study estimated the relative cleavage frequency for each pair of adjacent amino acids along the peptide length. The study showed that the cleavage frequency can be directly used to predict the tandem mass spectra. The predicted spectra show a high correlation with the experimental spectra used in this study; 99.73% of the high-quality reference spectra have correlation scores greater than 0.8. The new method predicts the theoretical spectrum and correlates significantly better with the experimental spectrum as compared to the existing spectrum prediction tools OpenMS_Simulator, MS2PIP, and MS2PBPI, where only 80, 85.76, and 85.80% of the spectral count, respectively, has a correlation score greater than 0.8.
Collapse
|
11
|
Fornelli L, Srzentić K, Toby TK, Doubleday PF, Huguet R, Mullen C, Melani RD, Dos Santos Seckler H, DeHart CJ, Weisbrod CR, Durbin KR, Greer JB, Early BP, Fellers RT, Zabrouskov V, Thomas PM, Compton PD, Kelleher NL. Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics. Mol Cell Proteomics 2020; 19:405-420. [PMID: 31888965 PMCID: PMC7000117 DOI: 10.1074/mcp.tir119.001638] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134
| | | | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208; Proteinaceous Inc., Evanston, Illinois 60201
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208.
| |
Collapse
|
12
|
Foreman DJ, Dziekonski ET, McLuckey SA. Maximizing Selective Cleavages at Aspartic Acid and Proline Residues for the Identification of Intact Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:34-44. [PMID: 29713964 PMCID: PMC6207472 DOI: 10.1007/s13361-018-1965-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 05/03/2023]
Abstract
A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- David J Foreman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | | | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
13
|
Haverland NA, Skinner OS, Fellers RT, Tariq AA, Early BP, LeDuc RD, Fornelli L, Compton PD, Kelleher NL. Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1203-1215. [PMID: 28374312 PMCID: PMC5452613 DOI: 10.1007/s13361-017-1635-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 05/03/2023]
Abstract
Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered (P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicole A Haverland
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Owen S Skinner
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Ryan T Fellers
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Areeba A Tariq
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Bryan P Early
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Richard D LeDuc
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Luca Fornelli
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Philip D Compton
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
14
|
Kuchibhotla B, Kola SR, Medicherla JV, Cherukuvada SV, Dhople VM, Nalam MR. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1216-1226. [PMID: 28349438 DOI: 10.1007/s13361-017-1606-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bhanuramanand Kuchibhotla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sankara Rao Kola
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Jagannadham V Medicherla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Swamy V Cherukuvada
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Vishnu M Dhople
- Department of Functional Genomics, University Medicine Greifswald, Interface Institute Genetics & Functional Genomics, D-17475, Greifswald, Germany
| | - Madhusudhana Rao Nalam
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
15
|
Rathore D, Aboufazeli F, Dodds ED. Obtaining complementary polypeptide sequence information from a single precursor ion packet via sequential ion mobility-resolved electron transfer and vibrational activation. Analyst 2016; 140:7175-83. [PMID: 26357706 DOI: 10.1039/c5an01225b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tandem mass spectrometry (MS/MS) is now well-known as a powerful tool for characterizing the primary structures of peptides and proteins; however, in many cases the use of but a single dissociation method provides only a partial view of the amino acid sequences and post-translational modification patterns of polypeptides. While the application of multiple fragmentation methods can be more informative, this introduces the burden of acquiring multiple MS/MS spectra per analyte, thus reducing the effective duty cycle of such methods. In this work, initial proof-of-concept is provided for a method designed to overcome these barriers. This method relies on the complementary fragmentation information that can be provided by performing collision-induced dissociation (CID) and electron transfer dissociation (ETD) in concert, while also taking advantage of an ion mobility (IM) dimension to temporally resolve the occurrence of CID and ETD when applied to a single accumulated packet of precursor ions. In this way, the significant proportion of the precursor ion population that remains unreacted in ETD experiments is subjected to CID rather than being fruitlessly discarded. In addition, the two distinct fragmentation spectra can be extracted from their corresponding IM domains to render readily interpretable individual fragmentation spectra. This scheme was demonstrated for several polypeptides ranging from 1.3 to 8.6 kDa in molecular weight. In each case, IM-resolved CID and ETD events resulted in b/y and c/z ions, respectively, which each covered both unique and overlapping sequence information. These findings demonstrate that the combination of CID and ETD can be achieved with greater utilization of the available ion population and little or no loss of duty cycle.
Collapse
Affiliation(s)
- Deepali Rathore
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
16
|
Plaviak A, Osburn S, Patterson K, van Stipdonk MJ. Even-electron [M-H](+) ions generated by loss of AgH from argentinated peptides with N-terminal imine groups. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:69-80. [PMID: 26661972 DOI: 10.1002/rcm.7415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Experiments were performed to probe the creation of apparent even-electron, [M-H](+) ions by CID of Ag-cationized peptides with N-terminal imine groups (Schiff bases). METHODS Imine-modified peptides were prepared using condensation reactions with aldehydes. Ag(+) -cationized precursors were generated by electrospray ionization (ESI). Tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer. RESULTS Loss of AgH from peptide [M + Ag](+) ions, at the MS/MS stage, creates closed-shell [M-H](+) ions from imine-modified peptides. Isotope labeling unambiguously identifies the imine C-H group as the source of H eliminated in AgH. Subsequent CID of the [M-H](+) ions generated sequence ions that are analogous to those produced from [M + H](+) ions of the imine-modified peptides. CONCLUSIONS Experiments show (a) formation of novel even-electron peptide cations by CID and (b) the extent to which sequence ions (conventional b, a and y ions) are generated from peptides with fixed charge site and thus lacking a conventional mobile proton.
Collapse
Affiliation(s)
- Alexandra Plaviak
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Sandra Osburn
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Khiry Patterson
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| |
Collapse
|
17
|
Strategies in protein sequencing and characterization: Multi-enzyme digestion coupled with alternate CID/ETD tandem mass spectrometry. Anal Chim Acta 2015; 854:106-17. [DOI: 10.1016/j.aca.2014.10.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
|
18
|
Raulfs MDM, Breci L, Bernier M, Hamdy OM, Janiga A, Wysocki V, Poutsma JC. Investigations of the mechanism of the "proline effect" in tandem mass spectrometry experiments: the "pipecolic acid effect". JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1705-1715. [PMID: 25078156 DOI: 10.1007/s13361-014-0953-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 06/03/2023]
Abstract
The fragmentation behavior of a set of model peptides containing proline, its four-membered ring analog azetidine-2-carboxylic acid (Aze), its six-membered ring analog pipecolic acid (Pip), an acyclic secondary amine residue N-methyl-alanine (NMeA), and the D stereoisomers of Pro and Pip has been determined using collision-induced dissociation in ESI-tandem mass spectrometers. Experimental results for AAXAA, AVXLG, AAAXA, AGXGA, and AXPAA peptides are presented, where X represents Pro, Aze, Pip, or NMeA. Aze- and Pro-containing peptides fragment according to the well-established "proline effect" through selective cleavage of the amide bond N-terminal to the Aze/Pro residue to give yn (+) ions. In contrast, Pip- and NMA-fragment through a different mechanism, the "pipecolic acid effect," selectively at the amide bond C-terminal to the Pip/NMA residue to give bn (+) ions. Calculations of the relative basicities of various sites in model peptide molecules containing Aze, Pro, Pip, or NMeA indicate that whereas the "proline effect' can in part be rationalized by the increased basicity of the prolyl-amide site, the "pipecolic acid effect" cannot be justified through the basicity of the residue. Rather, the increased flexibility of the Pip and NMeA residues allow for conformations of the peptide for which transfer of the mobile proton to the amide site C-terminal to the Pip/NMeA becomes energetically favorable. This argument is supported by the differing results obtained for AAPAA versus AA(D-Pro)AA, a result that can best be explained by steric effects. Fragmentation of pentapeptides containing both Pro and Pip indicate that the "pipecolic acid effect" is stronger than the "proline effect."
Collapse
Affiliation(s)
- Mary Disa M Raulfs
- Department of Chemistry, The College of William and Mary, Williamsburg, VA, 23187, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zinnel NF, Russell DH. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification. Anal Chem 2014; 86:4791-8. [PMID: 24754452 DOI: 10.1021/ac403929u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ion mobility is used to disperse product ions formed by collision-induced dissociation (CID) on the basis of charge state and size-to-charge ratio. We previously described an approach for combining CID with ion mobility mass spectrometry (IM-MS) for dispersing fragment ions along charge state specific trend lines (Zinnel, N. F.; Pai, P. J.; Russell, D. H. Anal. Chem. 2012, 84, 3390; Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2004, 15, 1341; McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301), and this approach was used to assign metal ion binding sites for human metallothionein protein MT-2a (Chen, S. H.; Russell, W. K.; Russell, D. H. Anal. Chem. 2013, 85, 3229). Here, we use this approach to distinguish b-type N-terminal fragment ions from both internal fragment ions and y-type C-terminal fragment ions. We also show that in some cases specific secondary structural elements, viz., extended coils or helices, can be obtained for the y-type fragment ions series. The advantage of this approach is that product ion identity can be correlated to gas-phase ion structure, which provides rapid identification of the onset and termination of extended coil structure in peptides.
Collapse
Affiliation(s)
- Nathanael F Zinnel
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University , College Station, Texas 77842, United States
| | | |
Collapse
|
20
|
Kolli V, Dodds ED. Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 2014; 139:2144-53. [DOI: 10.1039/c3an02342g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Perdivara I, Perera L, Sricholpech M, Terajima M, Pleshko N, Yamauchi M, Tomer KB. Unusual fragmentation pathways in collagen glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1072-1081. [PMID: 23633013 PMCID: PMC3679267 DOI: 10.1007/s13361-013-0624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 05/29/2023]
Abstract
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X-Y-Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways-amide bond and glycosidic bond cleavage-are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Lalith Perera
- Computational Chemistry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Pennsylvania, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Kenneth B. Tomer
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
22
|
A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics. Nat Biotechnol 2013; 31:557-64. [DOI: 10.1038/nbt.2585] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 04/15/2013] [Indexed: 01/24/2023]
|
23
|
Gucinski AC, Chamot-Rooke J, Steinmetz V, Somogyi Á, Wysocki VH. Influence of N-terminal residue composition on the structure of proline-containing b2+ ions. J Phys Chem A 2013; 117:1291-8. [PMID: 23312013 PMCID: PMC3641857 DOI: 10.1021/jp306759f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To probe the structural implications of the proline residue on its characteristic peptide fragmentation patterns, in particular its unusual cleavage at its C-terminus in formation of a b(2) ion in XxxProZzz sequences, the structures of a series of proline-containing b(2)(+) ions were studied by using action infrared multiphoton dissociation (IRMPD) spectroscopy and fragment ion hydrogen-deuterium exchange (HDX). Five different Xxx-Pro b(2)(+) ions were studied, with glycine, alanine, isoleucine, valine, or histidine in the N-terminal position. The residues selected feature different sizes, chain lengths, and gas phase basicities to explore whether the structure of the N-terminal residue influences the Xxx-Pro b(2)(+) ion structure. In proteins, the proline side chain-to-backbone attachment causes its peptide bonds to be in the cis conformation more than any other amino acid, although trans is still favored over cis. However, HP is the only b(2)(+) ion studied here that forms the diketopiperazine exclusively. The GP, AP, IP, and VP b(2)(+) ions formed from protonated tripeptide precursors predominantly featured oxazolone structures with small diketopiperazine contributions. In contrast to the b(2)(+) ions generated from tripeptides, synthetic cyclic dipeptides VP and HP were confirmed to have exclusive diketopiperazine structures.
Collapse
Affiliation(s)
- Ashley C Gucinski
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Boulevard, P.O. Box 210041, Tucson, Arizona 85721-0041, USA.
| | | | | | | | | |
Collapse
|
24
|
Grover H, Wallstrom G, Wu CC, Gopalakrishnan V. Context-sensitive markov models for peptide scoring and identification from tandem mass spectrometry. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:94-105. [PMID: 23289783 PMCID: PMC3567622 DOI: 10.1089/omi.2012.0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation process, thus contributing to loss of potential identifications. We present a novel probabilistic scoring algorithm called Context-Sensitive Peptide Identification (CSPI) based on highly flexible Input-Output Hidden Markov Models (IO-HMM) that capture the influence of peptide physicochemical properties on their observed MS/MS spectra. We use several local and global properties of peptides and their fragment ions from literature. Comparison with two popular algorithms, Crux (re-implementation of SEQUEST) and X!Tandem, on multiple datasets of varying complexity, shows that peptide identification scores from our models are able to achieve greater discrimination between true and false peptides, identifying up to ∼25% more peptides at a False Discovery Rate (FDR) of 1%. We evaluated two alternative normalization schemes for fragment ion-intensities, a global rank-based and a local window-based. Our results indicate the importance of appropriate normalization methods for learning superior models. Further, combining our scores with Crux using a state-of-the-art procedure, Percolator, we demonstrate the utility of using scoring features from intensity-based models, identifying ∼4-8 % additional identifications over Percolator at 1% FDR. IO-HMMs offer a scalable and flexible framework with several modeling choices to learn complex patterns embedded in MS/MS data.
Collapse
Affiliation(s)
- Himanshu Grover
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Garrick Wallstrom
- Department of Biomedical Informatics, Arizona State University, Scottsdale, Arizona
| | - Christine C. Wu
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vanathi Gopalakrishnan
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Fazal Z, Southey BR, Sweedler JV, Rodriguez-Zas SL. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2013; 6:23-29. [PMID: 24031159 PMCID: PMC3768159 DOI: 10.4172/jpb.1000256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.
Collapse
Affiliation(s)
- Zeeshan Fazal
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, IL, USA
- Department of Statistics, University of Illinois Urbana-Champaign, IL, USA
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL, USA
- Department of Statistics, University of Illinois Urbana-Champaign, IL, USA
- Institute of Genomic Biology, University of Illinois Urbana-Champaign, IL, USA
| |
Collapse
|
26
|
Kim JS, Monroe ME, Camp DG, Smith RD, Qian WJ. In-source fragmentation and the sources of partially tryptic peptides in shotgun proteomics. J Proteome Res 2013; 12:910-6. [PMID: 23268687 DOI: 10.1021/pr300955f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, their sources have been controversial. Herein, we investigate the impact of in-source fragmentation on shotgun proteomics profiling of three biological samples: a standard protein mixture, a mouse brain tissue homogenate, and mouse plasma. Because the in-source fragments of peptide ions have the same LC elution time as their parental peptides, partially tryptic peptide ions from in-source fragmentation can be distinguished from other partially tryptic peptides based on their elution time differences from those computationally predicted data. The percentage of partially tryptic peptide identifications resulting from in-source fragmentation in a standard protein digest was observed to be ∼60%. In more complex mouse brain or plasma samples, in-source fragmentation contributed to a lesser degree of 1-3% of all identified peptides due to the limited dynamic range of LC-MS/MS measurements. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic cleavage by endogenous proteases in the samples. Our work also provides a method to identify such proteolytic-derived partially tryptic peptides due to endogenous proteases in the samples by removing in-source fragmentation artifacts from the identified peptides.
Collapse
Affiliation(s)
- Jong-Seo Kim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
27
|
Dodds ED. Gas-phase dissociation of glycosylated peptide ions. MASS SPECTROMETRY REVIEWS 2012; 31:666-82. [PMID: 22407588 DOI: 10.1002/mas.21344] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 05/15/2023]
Abstract
Among the myriad of protein post-translational modifications (PTMs), glycosylation presents a singular analytical challenge. On account of the extraordinary diversity of protein-linked carbohydrates and the great complexity with which they decorate glycoproteins, the rigorous establishment of glycan-protein connectivity is often an arduous experimental venture. Consequently, elaborating the interplay between structures of oligosaccharides and functions of proteins they modify is usually not a straightforward task. A more mature biochemical appreciation of carbohydrates as PTMs will significantly hinge upon analytical advances in the field of glycoproteomics. Undoubtedly, the analysis of glycosylated peptides by tandem mass spectrometry (MS/MS) will play a pivotal role in this regard. The goal of this review is to summarize, from an analytical and tutorial perspective, the present state of knowledge regarding the dissociation of glycopeptide ions as accomplished by various MS/MS methods. In addition, this review will endeavor to harmonize some seemingly disparate findings to provide a more complete and broadly applicable description of glycopeptide ion fragmentation. A fuller understanding of the rich variety of glycopeptide dissociation behaviors will allow glycoproteomic researchers to maximize the information yielded by MS/MS experiments, while also paving the way to new innovations in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, 711 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA.
| |
Collapse
|
28
|
Dong NP, Liang YZ, Yi LZ. Investigation of scrambled ions in tandem mass spectra. Part 1. Statistical characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1209-1220. [PMID: 22539146 DOI: 10.1007/s13361-012-0380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Scrambled ions have become the focus of recent investigations of peptide fragmentation. Here, an investigation of more than 390,000 high quality CID mass spectra is presented to explore the extent of scrambled ions in mass spectra and the possible fragmentation rules during scramble reactions. For the former, scrambled ions generally make up more than 10 % of mass spectra in number, although the abundances are less than 0.1 of the base peak. For the latter, relatively preferential re-opening sites were found for aliphatic residues Ala, Ile, Leu, and other residues such as Met, Gln, Ser, Phe, and Thr, whereas disfavored sites were found for basic residues Arg, Lys, and His, and Trp for both scrambled b and a ions. Similar preferential order in re-opening reaction was found in the reaction of losing internal residues when cleavage occurs at C-terminal side of 20 residues. However, when cleavage occurs at N-terminal side, Glu, Phe, and Trp become the most preferential sites. These results provide a deep insight into cleavage rules during scramble reactions for prediction of peptide mass spectra. Also, an additional investigation of whether scrambled ions could help discriminate false identifications from correct identifications was performed. Probing the number fraction of scrambled ions in falsely and correctly interpreted spectra and analyzing the correlation between scrambled ions and SEQUEST scores XCorr and Sp showed scrambled ions could at some extent help improve the discrimination in singly charged identifications, whereas no improvement was found for multiply charged results.
Collapse
Affiliation(s)
- Nai-ping Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | | | | |
Collapse
|
29
|
Zinnel NF, Pai PJ, Russell DH. Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage. Anal Chem 2012; 84:3390-7. [PMID: 22455956 DOI: 10.1021/ac300193s] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general approach that combines mass spectrometry (MS), collision-induced dissociation (CID), ion mobility (IM), and MS for top-down proteomics is described, denoted as MS-CID-IM-MS. Using this approach, CID product ions are dispersed in two dimensions, specifically size-to-charge (IM) and mass-to-charge (MS), and the resulting 2D data display greatly facilitates peptide/protein mass mapping, amino acid sequence analysis, and determination of site-specific protein modifications. Also, this approach alleviates some of the inherent limitations of top-down proteomics, viz. the limitations in dynamic range for fragment ion abundances owing to the number of fragmentation channels available to large ionic systems as well as the resulting spectral congestion. For large peptides such as melittin (2845 Da), CID of the [M + 3H](3+), [M + 4H](4+), and [M + 5H](5+) ions yields amino acid sequence coverage of 42.3%, 38.5%, and 7.7%, respectively, whereas the hybrid MS-CID-IM-MS approach yields amino acid sequence coverages of 84.6%, 65.4%, and 69.2%, respectively. For large biomolecules such as ubiquitin (8565 Da), the amino acid sequence coverage increases from 39% to 76%. The MS-CID-IM-MS top-down approach allows for greater depth of information by allowing the assignment and study of internal fragment ions. Lastly, analysis of the methyl esterification of ubiquitin and single point mutation of human iron sulfur cluster U (HISCU, 14.3 kDa) demonstrates the ability of MS-CID-IM-MS to rapidly identify the presence and sites of modifications.
Collapse
Affiliation(s)
- Nathanael F Zinnel
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
30
|
Leymarie N, McComb ME, Naimy H, Staples GO, Zaia J. Differential Characterization and Classification of Tissue Specific Glycosaminoglycans by Tandem Mass Spectrometry and Statistical Methods. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 312:144-154. [PMID: 22523474 PMCID: PMC3329220 DOI: 10.1016/j.ijms.2011.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biological functions of glycoconjugate glycans arise in the context of structural heterogeneity resulting from non-template driven biosynthetic reactions. Such heterogeneity is particularly apparent for the glycosaminoglycan (GAG) classes, of which heparan sulfate (HS) is of particular interest for its properties in binding to many classes of growth factors and growth factor receptors. The structures of HS chains vary according to spatial and temporal factors in biological systems as a mechanism where by the functions of the relatively limited number of associated proteoglycan core proteins is elaborated. Thus, there is a strong driver for the development of methods to discover functionally relevant structures in HS preparations for different sources. In the present work, a set of targeted tandem mass spectra were acquired in automated mode on HS oligosaccharides deriving from two different tissue sources. Statistical methods were used to determine the precursor and product ions, the abundances of which differentiate between the tissue sources. The results demonstrate considerable potential for using this approach to constrain the number of positional glycoform isomers present in different biological preparations toward the end of discovery of functionally relevant structures.
Collapse
Affiliation(s)
- Nancy Leymarie
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University, Boston, MA
| | - Mark E. McComb
- Center for Biomedical Mass Spectrometry, Dept. of Medicine, Boston University, Boston, MA
| | - Hicham Naimy
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University, Boston, MA
| | - Gregory O. Staples
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University, Boston, MA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University, Boston, MA
| |
Collapse
|
31
|
Li W, Song C, Bailey DJ, Tseng GC, Coon JJ, Wysocki VH. Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. Anal Chem 2011; 83:9540-5. [PMID: 22022956 DOI: 10.1021/ac202327r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer dissociation (ETD) is an alternative peptide dissociation method developed in recent years. Compared with the traditional collision induced dissociation (CID) b and y ion formation, ETD generates c and z ions and the backbone cleavage is believed to be less selective. We have reported previously the application of a statistical data mining strategy, K-means clustering, to discover fragmentation patterns for CID, and here we report application of this approach to ETD spectra. We use ETD data sets from digestions with three different proteases. Data analysis shows that selective cleavages do exist for ETD, with the fragmentation patterns affected by protease, charge states, and amino acid residue compositions. It is also noticed that the c(n-1) ion, corresponding to loss of the C-terminal amino acid residue, is statistically strong regardless of the residue at the C-terminus of the peptide, which suggests that the peptide gas phase conformation plays an important role in the dissociation pathways. These patterns provide a basis for mechanism elucidation, spectral prediction, and improvement of ETD peptide identification algorithms.
Collapse
Affiliation(s)
- Wenzhou Li
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
32
|
Li W, Ji L, Goya J, Tan G, Wysocki VH. SQID: an intensity-incorporated protein identification algorithm for tandem mass spectrometry. J Proteome Res 2011; 10:1593-602. [PMID: 21204564 DOI: 10.1021/pr100959y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To interpret LC-MS/MS data in proteomics, most popular protein identification algorithms primarily use predicted fragment m/z values to assign peptide sequences to fragmentation spectra. The intensity information is often undervalued, because it is not as easy to predict and incorporate into algorithms. Nevertheless, the use of intensity to assist peptide identification is an attractive prospect and can potentially improve the confidence of matches and generate more identifications. On the basis of our previously reported study of fragmentation intensity patterns, we developed a protein identification algorithm, SeQuence IDentfication (SQID), that makes use of the coarse intensity from a statistical analysis. The scoring scheme was validated by comparing with Sequest and X!Tandem using three data sets, and the results indicate an improvement in the number of identified peptides, including unique peptides that are not identified by Sequest or X!Tandem. The software and source code are available under the GNU GPL license at http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm.
Collapse
Affiliation(s)
- Wenzhou Li
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | |
Collapse
|
33
|
Helsens K, Martens L, Vandekerckhove J, Gevaert K. Mass spectrometry-driven proteomics: an introduction. Methods Mol Biol 2011; 753:1-27. [PMID: 21604112 DOI: 10.1007/978-1-61779-148-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins are reckoned to be the key actors in a living organism. By studying proteins, one engages into deciphering a complex series of events occurring during a protein's life span. This starts at the creation of a protein, which is tightly controlled on both a transcriptional (Williams and Tyler, 2007, Curr Opin Genet Dev 17, 88-93) and a translational level (Van Der Kelen et al., 2009, Crit Rev Biochem Mol Biol 44, 143-168). During translation, a primary strand of amino acids undergoes a complex folding process in order to obtain a native three-dimensional protein structure (Gross et al., 2003, Cell 115, 739-750). Proteins take on a plethora of functions, such as complex formation, receptor activity, and signal transduction, which ultimately adds up to a cellular phenotype. Consequently, protein analysis is of major interest in molecular biology and involves annotating their presence and localization, as well as their modification state and biochemical context. To accomplish this, many methods have been developed over the last decades, and their general principles and important recent advances in large-scale protein analysis or proteomics are discussed in this review.
Collapse
Affiliation(s)
- Kenny Helsens
- Department of Medical Protein Research, VIB, Ghent University, B-9000, Ghent, Belgium.
| | | | | | | |
Collapse
|
34
|
Lam AKY, Ryzhov V, O'Hair RAJ. Mobile protons versus mobile radicals: gas-phase unimolecular chemistry of radical cations of cysteine-containing peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1296-1312. [PMID: 20189828 DOI: 10.1016/j.jasms.2010.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/22/2010] [Accepted: 01/28/2010] [Indexed: 05/28/2023]
Abstract
A combination of electrospray ionization (ESI), multistage, and high-resolution mass spectrometry experiments are used to examine the gas-phase fragmentation reactions of radical cations of cysteine containing di- and tripeptides. Two different chemical methods were used to form initial populations of radical cations in which the radical sites were located at different positions: (1) sulfur-centered cysteinyl radicals via bond homolysis of protonated S-nitrosocysteine containing peptides; and (2) alpha-carbon backbone-centered radicals via Siu's sequence of reactions (J. Am. Chem. Soc.2008, 130, 7862). Comparison of the fragmentation reactions of these regiospecifically generated radicals suggests that hydrogen atom transfer (HAT) between the alpha C-H of adjacent residues and the cysteinyl radical can occur. In addition, using accurate mass measurements, deuterium labeling, and comparison with an authentic sample, a novel loss of part of the N-terminal cysteine residue was shown to give rise to the protonated, truncated N-formyl peptide (an even-electron x(n) ion). DFT calculations were performed on the radical cation [GCG]*(+) to examine: the relative stabilities of isomers with different radical and protonation sites; the barriers associated with radical migration between four possible radical sites, [G*CG](+), [GC*G](+), [GCG*](+), and [GC(S*)G](+); and for dissociation from these sites to yield b(2)-type ions.
Collapse
Affiliation(s)
- Adrian K Y Lam
- School of Chemistry, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
35
|
Cobb JS, Easterling ML, Agar JN. Structural characterization of intact proteins is enhanced by prevalent fragmentation pathways rarely observed for peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:949-59. [PMID: 20303285 PMCID: PMC2873110 DOI: 10.1016/j.jasms.2010.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 02/02/2010] [Accepted: 02/08/2010] [Indexed: 05/03/2023]
Abstract
While collisionally activated dissociation (CAD) pathways for peptides are well characterized, those of intact proteins are not. We systematically assigned CAD product ions of ubiquitin, myoglobin, and bovine serum albumin generated using high-yield, in-source fragmentation. Assignment of >98% of hundreds of product ions implies that the fragmentation pathways described are representative of the major pathways. Protein dissociation mechanisms were found to be modulated by both source declustering potential and precursor ion charge state. Like peptides, higher charge states of proteins fragmented at lower energies next to Pro, via mobile protons, while lower charge states fragmented at higher energies after Asp and Glu, via localized protons. Unlike peptides, however, predominant fragmentation channels of proteins occurred at intermediate charge states via non-canonical mechanisms and produced extensive internal fragmentation. The non-canonical mechanisms include prominent cleavages C-terminal to Pro and Asn, and N-terminal to Ile, Leu, and Ser; these cleavages, along with internal fragments, led to a 45% increase in sequence coverage, improving the specificity of top-down protein identification. Three applications take advantage of the different mechanisms of protein fragmentation. First, modulation of declustering potential selectively fragments different charge states, allowing the source region to be used as the first stage of a low-resolution tandem mass spectrometer, facilitating pseudo-MS(3) of product ions with known parent charge states. Second, development and integration of automated modulation of ion funnel declustering potential allows users access to a particular fragmentation mechanism, yielding facile cleavage on a liquid chromatography timescale. Third, augmentation of a top-down search engine improved protein characterization.
Collapse
Affiliation(s)
- Jennifer S. Cobb
- Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, MA 02454
| | | | - Jeffrey N. Agar
- Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, MA 02454
| |
Collapse
|
36
|
Tseng GC. Quantile map: simultaneous visualization of patterns in many distributions with application to tandem mass spectrometry. Comput Stat Data Anal 2010; 54:1124. [PMID: 20161641 DOI: 10.1016/j.csda.2009.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High-throughput experiments have become more and more prevalent in biomedical research. The high-dimensional data have brought new challenges. Effective data reduction, summarization and visualization are important keys to initial exploration in the data mining. In this paper, we introduce a visualization tool, namely quantile map, to present information contained in a probabilistic distribution. We demonstrate its use as an effective visual analysis tool through the application of a tandem mass spectrometry data set. Information of quantiles of a distribution is presented in gradient colors by concentric doughnuts. The width of the doughnuts is proportional to the Fisher information of the distribution to present unbiased visualization effect. A parametric empirical Bayes (PEB) approach is shown to improve the simple maximum likelihood estimate (MLE) approach when estimating the Fisher information. In the motivating example from tandem mass spectrometry data, multiple probabilistic distributions are to be displayed in two-dimensional grids. A hierarchical clustering to reorder rows and columns and a gradient color selection from a Hue-Chroma-Luminance model, similar to that commonly applied in heatmaps of microarray analysis, are adopted to improve the visualization. Both simulations and the motivating example show superior performance of quantile map in summarization and visualization of such high-throughput data sets.
Collapse
Affiliation(s)
- George C Tseng
- George C. Tseng is Assistant Professor, Department of Biostatistics and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261 ( )
| |
Collapse
|
37
|
Gucinski AC, Dodds ED, Li W, Wysocki VH. Understanding and exploiting Peptide fragment ion intensities using experimental and informatic approaches. Methods Mol Biol 2010; 604:73-94. [PMID: 20013365 DOI: 10.1007/978-1-60761-444-9_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tandem mass spectrometry is a widely used tool in proteomics. This section will address the properties that describe how protonated peptides fragment when activated by collisions in a mass spectrometer and how that information can be used to identify proteins. A review of the mobile proton model is presented, along with a summary of commonly observed peptide cleavage enhancements, including the proline effect. The methods used to elucidate peptide dissociation chemistry by using both small groups of model peptides and large datasets are also discussed. Finally, the role of peak intensity in commercially available and developmental peptide identification algorithms is examined.
Collapse
Affiliation(s)
- Ashley C Gucinski
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
38
|
Diego PAC, Bajrami B, Jiang H, Shi Y, Gascon JA, Yao X. Site-Preferential Dissociation of Peptides with Active Chemical Modification for Improving Fragment Ion Detection. Anal Chem 2009; 82:23-7. [DOI: 10.1021/ac902120k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pamela Ann C. Diego
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Bekim Bajrami
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Hui Jiang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Yu Shi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Jose A. Gascon
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
39
|
Boersema PJ, Mohammed S, Heck AJR. Phosphopeptide fragmentation and analysis by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:861-878. [PMID: 19504542 DOI: 10.1002/jms.1599] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reversible phosphorylation is a key event in many biological processes and is therefore a much studied phenomenon. The mass spectrometric (MS) analysis of phosphorylation is challenged by the substoichiometric levels of phosphorylation and the lability of the phosphate group in collision-induced dissociation (CID). Here, we review the fragmentation behaviour of phosphorylated peptides in MS and discuss several MS approaches that have been developed to improve and facilitate the analysis of phosphorylated peptides. CID of phosphopeptides typically results in spectra dominated by a neutral loss of the phosphate group. Several proposed mechanisms for this neutral loss and several factors affecting the extent at which this occurs are discussed. Approaches are described to interpret such neutral loss-dominated spectra to identify the phosphopeptide and localize the phosphorylation site. Methods using additional activation, such as MS(3) and multistage activation (MSA), have been designed to generate more sequence-informative fragments from the ion produced by the neutral loss. The characteristics and benefits of these methods are reviewed together with approaches using phosphopeptide derivatization or specific MS scan modes. Additionally, electron-driven dissociation methods by electron capture dissociation (ECD) or electron transfer dissociation (ETD) and their application in phosphopeptide analysis are evaluated. Finally, these techniques are put into perspective for their use in large-scale phosphoproteomics studies.
Collapse
Affiliation(s)
- Paul J Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
40
|
Lau KW, Hart SR, Lynch JA, Wong SCC, Hubbard SJ, Gaskell SJ. Observations on the detection of b- and y-type ions in the collisionally activated decomposition spectra of protonated peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1508-14. [PMID: 19370712 DOI: 10.1002/rcm.4032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tandem mass spectrometric data from peptides are routinely used in an unsupervised manner to infer product ion sequence and hence the identity of their parent protein. However, significant variability in relative signal intensity of product ions within peptide tandem mass spectra is commonly observed. Furthermore, instrument-specific patterns of fragmentation are observed, even where a common mechanism of ion heating is responsible for generation of the product ions. This information is currently not fully exploited within database searching strategies; this motivated the present study to examine a large dataset of tandem mass spectra derived from multiple instrumental platforms. Here, we report marked global differences in the product ion spectra of protonated tryptic peptides generated from two of the most common proteomic platforms, namely tandem quadrupole-time-of-flight and quadrupole ion trap instruments. Specifically, quadrupole-time-of-flight tandem mass spectra show a significant under-representation of N-terminal b-type fragments in comparison to quadrupole ion trap product ion spectra. Energy-resolved mass spectrometry experiments conducted upon test tryptic peptides clarify this disparity; b-type ions are significantly less stable than their y-type N-terminal counterparts, which contain strongly basic residues. Secondary fragmentation processes which occur within the tandem quadrupole-time-of-flight device account for the observed differences, whereas this secondary product ion generation does not occur to a significant extent from resonant excitation performed within the quadrupole ion trap. We suggest that incorporation of this stability information in database searching strategies has the potential to significantly improve the veracity of peptide ion identifications as made by conventional database searching strategies.
Collapse
Affiliation(s)
- King Wai Lau
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
41
|
Barlow CK, O'Hair RAJ. Gas-phase peptide fragmentation: how understanding the fundamentals provides a springboard to developing new chemistry and novel proteomic tools. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1301-1319. [PMID: 18819114 DOI: 10.1002/jms.1469] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This tutorial provides an overview of the evolution of some of the key concepts in the gas-phase fragmentation of different classes of peptide ions under various conditions [e.g. collision-induced dissociation (CID) and electron transfer dissociation (ETD)], and then demonstrates how these concepts can be used to develop new methods. For example, an understanding of the role of the mobile proton and neighboring group interactions in the fragmentation reactions of protonated peptides has led to the design of the 'SELECT' method. For ETD, a model based on the Landau-Zener theory reveals the role of both thermodynamic and geometric effects in the electron transfer from polyatomic reagent anions to multiply protonated peptides, and this predictive model has facilitated the design of a new strategy to form ETD reagent anions from precursors generated via ESI. Finally, two promising, emerging areas of gas-phase ion chemistry of peptides are also described: (1) the design of new gas-phase radical chemistry to probe peptide structure, and (2) selective cleavage of disulfide bonds of peptides in the gas phase via various physicochemical approaches.
Collapse
Affiliation(s)
- Christopher K Barlow
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|