1
|
High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics. J Proteomics 2020; 226:103901. [PMID: 32668291 DOI: 10.1016/j.jprot.2020.103901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
Abstract
Ecotoxicoproteomics employs mass spectrometry-based approaches centered on proteins of sentinel organisms to assess for instance, chemical toxicity in fresh water. In this study, we combined proteogenomics experiments and a novel targeted proteomics approach free from retention time scheduling called Scout-MRM. This methodology will enable the measurement of simultaneously changes in the relative abundance of multiple proteins involved in key physiological processes and potentially impacted by contaminants in the freshwater sentinel Gammarus fossarum. The development and validation of the assay were performed to target 157 protein biomarkers of this non-model organism. We carefully chose and validated the transitions to monitor using conventional parameters (linearity, repeatability, LOD, LOQ). Finally, the potential of the methodology is illustrated by measuring 277-peptide-plex assay (831 transitions) in sentinel animals exposed in natura to different agricultural sites potentially exposed to pesticide contamination. Multivariate data analyses highlighted the modulation of several key proteins involved in feeding and molting. This multiplex-targeted proteomics assay paves the way for the discovery and the use of a large panel of novel protein biomarkers in emergent ecotoxicological models for environmental monitoring in the future. BIOLOGICAL SIGNIFICANCE: The study contributed to the development of Scout-MRM for the high-throughput quantitation of a large panel of proteins in the Gammarus fossarum freshwater sentinel. Increasing the number of markers in ecotoxicoproteomics is of most interest to assess the impact of pollutants in freshwater organisms. The development and validation of the assay enabled the monitoring of a large panel of reporter peptides of exposed gammarids. To illustrate the applicability of the methodology, animals from different agricultural sites were analysed. The application of the assay highlighted the modulation of some biomarker proteins involved in key physiological pathways, such as molting, feeding and general stress response. Increasing multiplexing capabilities and field test will provide the development of diagnostic protein biomarkers for emergent ecotoxicological models in future environmental biomonitoring programs.
Collapse
|
2
|
Abstract
Birth defects are the leading cause of infant mortality in the USA, yet the causes of most of these conditions are unknown. While a combination of genetic and environmental factors are suspected in most cases, little information exists about the health risks that prenatal exposure to many common chemicals poses for the fetus. Thus, development and refinement of procedures that can accurately predict embryotoxicity of compounds is important for curtailing the number of infants born with birth defects. The embryonic stem cell test (EST) is a procedure that utilizes comparison of cytotoxicity in embryonic and adult cells and inhibition of differentiation to predict embryotoxicity of compounds tested. Because of its use of existing cell lines, the EST dramatically reduces the need for animal test subjects in toxicity testing. In addition, because of its use of inhibition of differentiation as an endpoint, the EST is extremely versatile in the range of complications it can test for. In this chapter, procedures for use of the validated embryonic stem cell test with the traditional cardiomyocyte differentiation endpoint are explained. The protocol includes discussion of routine stem cell culture, the cardiomyocyte differentiation procedure, and methods for utilization of molecular endpoints for assessing embryotoxicity of compounds.
Collapse
|
3
|
Yang X, Zhang Y, Liu Y, Chen C, Xu W, Xiao H. Emodin induces liver injury by inhibiting the key enzymes of FADH/NADPH transport in rat liver. Toxicol Res (Camb) 2018; 7:888-896. [PMID: 30310665 PMCID: PMC6116728 DOI: 10.1039/c7tx00307b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
Emodin is a natural anthraquinone derivative that occurs in many Chinese medicinal herbs. It might induce liver damage, but the mechanism is not clear. In this research, seven groups of Sprague-Dawley (SD) rats with three doses of emodin were used. The liver injury was examined by analyzing biochemical indexes and histopathology. Altered proteins between the control group (CG) and the liver injury group were determined by proteomic technology. The results showed that emodin causes liver injury in a time- and dose-dependent manner. In the high-dosage 1-week group (HG1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was downregulated, and the activity of malate dehydrogenase (MDH) was inhibited by emodin. These might cause the inhibition of FADH or NADH/NADPH transport from the cytoplasm to mitochondria. The WB results showed that the inhibition of FADH/NADPH transport induced a high activity of caspase-9 and caspase-3, and the expressions of cytochrome c (Cyt C), caspase-9 and caspase-3 were high in HG1, which might lead to mitochondrial apoptosis pathway activation. In addition, whatever the HG1 or low-dose group (LG), the effects of emodin on mitochondria were observed. Overall, for the first time, we showed that emodin inhibited proton transport and induced the activation of the mitochondrial apoptosis pathway, which might be the reason for liver injury.
Collapse
Affiliation(s)
- Xiaowei Yang
- Institute of Chinese Materia China , Academy of Chinese Medical Sciences , China
| | - Yinhuan Zhang
- Research Center for Chinese Medicine Analysis and Transformation , Beijing University of Chinese Medicine , China .
| | - Yan Liu
- Institute of Chinese Materia China , Academy of Chinese Medical Sciences , China
| | - Chang Chen
- Institute of Chinese Materia China , Academy of Chinese Medical Sciences , China
| | - Wenjuan Xu
- Institute of Chinese Materia China , Academy of Chinese Medical Sciences , China
| | - Hongbin Xiao
- Research Center for Chinese Medicine Analysis and Transformation , Beijing University of Chinese Medicine , China .
| |
Collapse
|
4
|
Abstract
The genome revolution represents a complete change on our view of biological systems. The quantitative determination of changes in all major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of developmental toxicity assessment both for wildlife and humans. This is especially true for disciplines, like teratology, which rely on studies in model organisms, as studies at lower levels of organization are difficult to implement. Rodents and frogs have been the favorite models for studying human reproductive and developmental disorders for decades. Recently, the study of the development of zebrafish embryos (ZE) is becoming a major alternative tool to adult animal testing. ZE intrinsic characteristics makes this model a unique system to analyze in vivo developmental alterations that only can be studied applying in toto approaches. Moreover, under actual legislations, ZE is considered as a replacement model (and therefore, excluded from animal welfare regulations) during the first 5 days after fertilization. Here we review the most important components of the zebrafish toolbox available for analyzing early stages of embryotoxic events that could eventually lead to teratogenesis.
Collapse
|
5
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-60. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
6
|
The preparation and culture of washed human sperm: A comparison of a suite of protein-free media with media containing human serum albumin. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Wei J, Zhang F, Zhang Y, Cao C, Li X, Li D, Liu X, Yang H, Huang L. Proteomic investigation of signatures for geniposide-induced hepatotoxicity. J Proteome Res 2014; 13:5724-33. [PMID: 25336395 DOI: 10.1021/pr5007119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evaluating the safety of traditional medicinal herbs and their major active constituents is critical for their widespread usage. Geniposide, a major active constituent with a defined structure from the traditional medicinal herb Gardenia jasminoides ELLIS fruit, exhibits remarkable anti-inflammatory, antiapoptotic, and antifibrotic properties and has been used in a variety of medical fields, mainly for the treatment of liver diseases. However, geniposide-induced hepatotoxicity and methods for the early detection of hepatotoxicity have yet to be reported. In this study, geniposide-induced hepatotoxicity was investigated. In addition, candidate biomarkers for the earlier detection of geniposide-induced hepatotoxicity were identified using a label-free quantitative proteomics approach on a geniposide overdose-induced liver injury in a rat model. Using an accurate intensity-based, absolute quantification (iBAQ)-based, one-step discovery and verification approach, a candidate biomarker panel was easily obtained from individual samples in response to different conditions. To determine the biomarkers' early detection abilities, five candidate biomarkers were selected and tested using enzyme-linked immunosorbent assays (ELISAs). Two biomarkers, glycine N-methyltransferase (GNMT) and glycogen phosphorylase (PYGL), were found to indicate hepatic injuries significantly earlier than the current gold standard liver biomarker. This study provides a first insight into geniposide-induced hepatotoxicity in a rat model and describes a method for the earlier detection of this hepatotoxicity, facilitating the efficient monitoring of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dyrlund TF, Kirkegaard K, Poulsen ET, Sanggaard KW, Hindkjær JJ, Kjems J, Enghild JJ, Ingerslev HJ. Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis. Hum Reprod 2014; 29:2421-30. [PMID: 25164020 DOI: 10.1093/humrep/deu220] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Which non-declared proteins (proteins not listed on the composition list of the product data sheet) are present in unconditioned commercial embryo culture media? SUMMARY ANSWER A total of 110 non-declared proteins were identified in unconditioned media and between 6 and 8 of these were quantifiable and therefore represent the majority of the total protein in the media samples. WHAT IS KNOWN ALREADY There are no data in the literature on what non-declared proteins are present in unconditioned (fresh media in which no embryos have been cultured) commercial embryo media. STUDY DESIGN, SIZE, DURATION The following eight commercial embryo culture media were included in this study: G-1 PLUS and G-2 PLUS G5 Series from Vitrolife, Sydney IVF Cleavage Medium and Sydney IVF Blastocyst Medium from Cook Medical and EmbryoAssist, BlastAssist, Sequential Cleav and Sequential Blast from ORIGIO. Two batches were analyzed from each of the Sydney IVF media and one batch from each of the other media. All embryo culture media are supplemented by the manufacturers with purified human serum albumin (HSA 5 mg/ml). The purified HSA (HSA-solution from Vitrolife) and the recombinant human albumin supplement (G-MM from Vitrolife) were also analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS For protein quantification, media samples were in-solution digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For in-depth protein identification, media were albumin depleted, dialyzed and concentrated before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The gel was cut into 14 slices followed by in-gel trypsin digestion, and analysis by LC-MS/MS. Proteins were further investigated using gene ontology (GO) terms analysis. MAIN RESULTS AND THE ROLE OF CHANCE Using advanced mass spectrometry and high confidence criteria for accepting proteins (P < 0.01), a total of 110 proteins other than HSA were identified. The average HSA content was found to be 94% (92-97%) of total protein. Other individual proteins accounted for up to 4.7% of the total protein. Analysis of purified HSA strongly suggests that these non-declared proteins are introduced to the media when the albumin is added. GO analysis showed that many of these proteins have roles in defence pathways, for example 18 were associated with the innate immune response and 17 with inflammatory responses. Eight proteins have been reported previously as secreted embryo proteins. LIMITATIONS, REASONS FOR CAUTION For six of the commercial embryo culture media only one batch was analyzed. However, this does not affect the overall conclusions. WIDER IMPLICATIONS OF THE FINDINGS The results showed that the HSA added to IVF media contained many other proteins and that the amount varies from batch to batch. These variations in protein profiles are problematic when attempting to identify proteins derived from the embryos. Therefore, when studying the embryo secretome and analyzing conditioned media with the aim of finding potential biomarkers that can distinguish normal and abnormal embryo development, it is important that the medium used in the experimental and control groups is from the same batch. Furthermore, the proteins present in unconditioned media could potentially influence embryonic development, gestation age, birthweight and perhaps have subsequent effects on health of the offspring. STUDY FUNDING/COMPETING INTERESTS The study was supported by the Danish Agency for Science, Technology and Innovation. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from Merck Sharp & Dohme Corp and Ferring. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Thomas F Dyrlund
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Kirstine Kirkegaard
- The Fertility Clinic, Aarhus University Hospital, Aarhus N, Denmark Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kristian W Sanggaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C., Denmark
| | | | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C., Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C., Denmark
| | | |
Collapse
|
9
|
Usami M, Mitsunaga K, Irie T, Miyajima A, Doi O. Proteomic analysis of ethanol-induced embryotoxicity in cultured post-implantation rat embryos. J Toxicol Sci 2014; 39:285-92. [DOI: 10.2131/jts.39.285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences
| | | | - Tomohiko Irie
- Division of Pharmacology, National Institute of Health Sciences
| | - Atsuko Miyajima
- Division of Medical Devices, National Institute of Health Sciences
| | - Osamu Doi
- Laboratory of Animal Reproduction, United Graduate School of Agricultural Science, Gifu University
| |
Collapse
|
10
|
Mori H, Hara M. Cultured stem cells as tools for toxicological assays. J Biosci Bioeng 2013; 116:647-52. [DOI: 10.1016/j.jbiosc.2013.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
|
11
|
Latham KE, Sapienza C, Engel N. The epigenetic lorax: gene-environment interactions in human health. Epigenomics 2012; 4:383-402. [PMID: 22920179 DOI: 10.2217/epi.12.31] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This 'human genomics' information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene-environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures.
Collapse
Affiliation(s)
- Keith E Latham
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
12
|
Riebeling C, Hayess K, Peters AK, Steemans M, Spielmann H, Luch A, Seiler AEM. Assaying embryotoxicity in the test tube: current limitations of the embryonic stem cell test (EST) challenging its applicability domain. Crit Rev Toxicol 2012; 42:443-64. [PMID: 22512667 DOI: 10.3109/10408444.2012.674483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Testing for embryotoxicity in vitro is an attractive alternative to animal experimentation. The embryonic stem cell test (EST) is such a method, and it has been formally validated by the European Centre for the Validation of Alternative Methods. A number of recent studies have underscored the potential of this method. However, the EST performed well below the 78% accuracy expected from the validation study using a new set of chemicals and pharmaceutical compounds, and also of toxicity criteria, tested to enlarge the database of the validated EST as part of the Work Package III of the ReProTect Project funded within the 6th Framework Programme of the European Union. To assess the performance and applicability domain of the EST we present a detailed review of the substances and their effects in the EST being nitrofen, ochratoxin A, D-penicillamine, methylazoxymethanol, lovastatin, papaverine, warfarin, β-aminopropionitrile, dinoseb, furosemide, doxylamine, pravastatin, and metoclopramide. By delineation of the molecular mechanisms of the substances we identify six categories of reasons for misclassifications. Some of these limitations might also affect other in vitro methods assessing embryotoxicity. Substances that fall into these categories need to be included in future validation sets and in validation guidelines for embryotoxicity testing. Most importantly, we suggest conceivable improvements and additions to the EST which will resolve most of the limitations.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), ZEBET - Alternative Methods to Animal Experiments, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Schrattenholz A, Šoškić V, Schöpf R, Poznanović S, Klemm-Manns M, Groebe K. Protein biomarkers for in vitro testing of toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 746:113-23. [DOI: 10.1016/j.mrgentox.2012.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/14/2022]
|
14
|
Sison-Young RLC, Kia R, Heslop J, Kelly L, Rowe C, Cross MJ, Kitteringham NR, Hanley N, Park BK, Goldring CEP. Human pluripotent stem cells for modeling toxicity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:207-256. [PMID: 22776643 DOI: 10.1016/b978-0-12-398339-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of xenobiotics, driven by the demand for therapeutic, domestic and industrial uses continues to grow. However, along with this increasing demand is the risk of xenobiotic-induced toxicity. Currently, safety screening of xenobiotics uses a plethora of animal and in vitro model systems which have over the decades proven useful during compound development and for application in mechanistic studies of xenobiotic-induced toxicity. However, these assessments have proven to be animal-intensive and costly. More importantly, the prevalence of xenobiotic-induced toxicity is still significantly high, causing patient morbidity and mortality, and a costly impediment during drug development. This suggests that the current models for drug safety screening are not reliable in toxicity prediction, and the results not easily translatable to the clinic due to insensitive assays that do not recapitulate fully the complex phenotype of a functional cell type in vivo. Recent advances in the field of stem cell research have potentially allowed for a readily available source of metabolically competent cells for toxicity studies, derived using human pluripotent stem cells harnessed from embryos or reprogrammed from mature somatic cells. Pluripotent stem cell-derived cell types also allow for potential disease modeling in vitro for the purposes of drug toxicology and safety pharmacology, making this model possibly more predictive of drug toxicity compared with existing models. This article will review the advances and challenges of using human pluripotent stem cells for modeling metabolism and toxicity, and offer some perspectives as to where its future may lie.
Collapse
Affiliation(s)
- R L C Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Louisse J, Verwei M, Woutersen RA, Blaauboer BJ, Rietjens IMCM. Towardin vitrobiomarkers for developmental toxicity and their extrapolation to thein vivosituation. Expert Opin Drug Metab Toxicol 2011; 8:11-27. [DOI: 10.1517/17425255.2012.639762] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Usami M, Mitsunaga K. Proteomic analysis and in vitro developmental toxicity tests for mechanism-based safety evaluation of chemicals. Expert Rev Proteomics 2011; 8:153-5. [PMID: 21501008 DOI: 10.1586/epr.11.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanism-based safety evaluation and reduction of animal use are important issues in recent developmental toxicology. In vitro developmental toxicity tests with proteomic analysis are the most promising solution to these issues. Groebe et al. systematically applied proteomic analysis to the embryonic stem cell test, a validated in vitro developmental toxicity test, and found protein-expression changes induced by model test chemicals selected from various categories of toxicity. Cluster analysis of all the proteins with expression changes classified the test chemicals into two groups: highly embryotoxic chemicals and non- or weakly embryotoxic chemicals. In addition, some protein biomarker candidates that were known to be involved in normal development were identified. Although further mechanistic investigations are needed, the use of in vitro developmental toxicity tests with proteomic analysis will contribute to mechanism-based safety evaluation with minimal use of animals.
Collapse
Affiliation(s)
- Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo, 158-8501 Japan.
| | | |
Collapse
|
17
|
Seiler AEM, Spielmann H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 2011; 6:961-78. [DOI: 10.1038/nprot.2011.348] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|