1
|
Owens HA, Thorburn LE, Walsby E, Moon OR, Rizkallah P, Sherwani S, Tinsley CL, Rogers L, Cerutti C, Ridley AJ, Williams J, Knäuper V, Ager A. Alzheimer's disease-associated P460L variant of EphA1 dysregulates receptor activity and blood-brain barrier function. Alzheimers Dement 2024; 20:2016-2033. [PMID: 38184788 PMCID: PMC10984439 DOI: 10.1002/alz.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Genome-wide association studies link susceptibility to late-onset Alzheimer's disease (LOAD) with EphA1. Sequencing identified a non-synonymous substitution P460L as a LOAD risk variant. Other Ephs regulate vascular permeability and immune cell recruitment. We hypothesized that P460L dysregulates EphA1 receptor activity and impacts neuroinflammation. METHODS EphA1/P460L receptor activity was assayed in isogenic Human Embryonic Kidney (HEK) cells. Soluble EphA1/P460L (sEphA1/sP460L) reverse signaling in brain endothelial cells was assessed by T-cell recruitment and barrier function assays. RESULTS EphA1 and P460L were expressed in HEK cells, but membrane and soluble P460L were significantly reduced. Ligand engagement induced Y781 phosphorylation of EphA1 but not P460L. sEphA1 primed brain endothelial cells for increased T-cell recruitment; however, sP460L was less effective. sEphA1 decreased the integrity of the brain endothelial barrier, while sP460L had no effect. DISCUSSION These findings suggest that P460L alters EphA1-dependent forward and reverse signaling, which may impact blood-brain barrier function in LOAD. HIGHLIGHTS EphA1-dependent reverse signaling controls recruitment of T cells by brain endothelial cells. EphA1-dependent reverse signaling remodels brain endothelial cell contacts. LOAD-associated P460L variant of EphA1 shows reduced membrane expression and reduced ligand responses. LOAD-associated P460L variant of EphA1 fails to reverse signal to brain endothelial cells.
Collapse
Affiliation(s)
- Helen A. Owens
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
- School of DentistryCardiff UniversityCardiffUK
| | - Lauren E. Thorburn
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
- UK Dementia Research Institute, Cardiff UniversityCardiffUK
| | - Elisabeth Walsby
- Division of Cancer & GeneticsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Owen R. Moon
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Pierre Rizkallah
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Subuhi Sherwani
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Caroline L. Tinsley
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Louise Rogers
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
| | - Camilla Cerutti
- School of Cellular and Molecular Medicine, University of BristolBristolUK
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of BristolBristolUK
| | | | | | - Ann Ager
- Division of Infection and ImmunitySchool of Medicine, Cardiff UniversityCardiffUK
- Systems Immunity University Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
2
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Borcherding DC, Amin NV, He K, Zhang X, Lyu Y, Dehner C, Bhatia H, Gothra A, Daud L, Ruminski P, Pratilas CA, Pollard K, Sundby T, Widemann BC, Hirbe AC. MEK Inhibition Synergizes with TYK2 Inhibitors in NF1-Associated Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res 2023; 29:1592-1604. [PMID: 36799629 PMCID: PMC10102849 DOI: 10.1158/1078-0432.ccr-22-3722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas with limited treatment options and poor survival rates. About half of MPNST cases are associated with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Overexpression of TYK2 occurs in the majority of MPNST, implicating TYK2 as a therapeutic target. EXPERIMENTAL DESIGN The effects of pharmacologic TYK2 inhibition on MPNST cell proliferation and survival were examined using IncuCyte live cell assays in vitro, and downstream actions were analyzed using RNA-sequencing (RNA-seq), qPCR arrays, and validation of protein changes with the WES automated Western system. Inhibition of TYK2 alone and in combination with MEK inhibition was evaluated in vivo using both murine and human MPNST cell lines, as well as MPNST PDX. RESULTS Pharmacologic inhibition of TYK2 dose-dependently decreased proliferation and induced apoptosis over time. RNA-seq pathway analysis on TYK2 inhibitor-treated MPNST demonstrated decreased expression of cell cycle, mitotic, and glycolysis pathways. TYK2 inhibition resulted in upregulation of the MEK/ERK pathway gene expression, by both RNA-seq and qPCR array, as well as increased pERK1/2 levels by the WES Western system. The compensatory response was tested with dual treatment with TYK2 and MEK inhibitors, which synergistically decreased proliferation and increased apoptosis in vitro. Finally, combination therapy was shown to inhibit growth of MPNST in multiple in vivo models. CONCLUSIONS These data provide the preclinical rationale for the development of a phase I clinical trial of deucravacitinib and mirdametinib in NF1-assosciated MPNST.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Neha V. Amin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin He
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaochun Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yang Lyu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Himanshi Bhatia
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Angad Gothra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Layla Daud
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Ruminski
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Banerjee SL, Lessard F, Chartier FJM, Jacquet K, Osornio-Hernandez AI, Teyssier V, Ghani K, Lavoie N, Lavoie JN, Caruso M, Laprise P, Elowe S, Lambert JP, Bisson N. EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Rep 2022; 40:111031. [PMID: 35793621 DOI: 10.1016/j.celrep.2022.111031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.
Collapse
Affiliation(s)
- Sara L Banerjee
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Ana I Osornio-Hernandez
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Karim Ghani
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Josée N Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Manuel Caruso
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Patrick Laprise
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Centre de recherche en données massives de l'Université Laval, Québec, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Endocrinologie-néphrologie, Québec, QC, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Zhu G, Jin L, Sun W, Wang S, Liu N. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers. Biochim Biophys Acta Rev Cancer 2022; 1877:188735. [PMID: 35577141 DOI: 10.1016/j.bbcan.2022.188735] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Gengjun Zhu
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Lifang Jin
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Shuang Wang
- Dermatological department, The Second Hospital of Jilin University, Changchun, China.
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China; Central Laboratory, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
7
|
Borcherding DC, He K, Amin NV, Hirbe AC. TYK2 in Cancer Metastases: Genomic and Proteomic Discovery. Cancers (Basel) 2021; 13:4171. [PMID: 34439323 PMCID: PMC8393599 DOI: 10.3390/cancers13164171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in genomic analysis and proteomic tools have rapidly expanded identification of biomarkers and molecular targets important to cancer development and metastasis. On an individual basis, personalized medicine approaches allow better characterization of tumors and patient prognosis, leading to more targeted treatments by detection of specific gene mutations, overexpression, or activity. Genomic and proteomic screens by our lab and others have revealed tyrosine kinase 2 (TYK2) as an oncogene promoting progression and metastases of many types of carcinomas, sarcomas, and hematologic cancers. TYK2 is a Janus kinase (JAK) that acts as an intermediary between cytokine receptors and STAT transcription factors. TYK2 signals to stimulate proliferation and metastasis while inhibiting apoptosis of cancer cells. This review focuses on the growing evidence from genomic and proteomic screens, as well as molecular studies that link TYK2 to cancer prevalence, prognosis, and metastasis. In addition, pharmacological inhibition of TYK2 is currently used clinically for autoimmune diseases, and now provides promising treatment modalities as effective therapeutic agents against multiple types of cancer.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Kevin He
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Neha V. Amin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (D.C.B.); (K.H.); (N.V.A.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|
9
|
Mechanism of Chinese herbal formula QHF against breast cancer MCF-7 cells invasion and migration. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Khandia R, Pattnaik B, Rajukumar K, Pateriya A, Bhatia S, Murugkar H, Prakash A, Pradhan HK, Dhama K, Munjal A, Joshi SK. Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget 2018; 8:35835-35847. [PMID: 28415766 PMCID: PMC5482621 DOI: 10.18632/oncotarget.16214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis secretes three secretary proteins; lethal factor (LF), protective antigen (PA) and edema factor (EF). The LF has ability to check proliferation of mammary tumors, chiefly depending on mitogen activated protein kinase (MAPK) signaling pathway. Evaluation of therapeutic potential of recombinant LF (rLF), recombinant PA (rPA) and lethal toxin (rLF + rPA = LeTx) on the primary mammary ductal carcinoma cells revealed significant (p < 0.01) reduction in proliferation of tumor cells with mean inhibition indices of 28.0 ± 1.37% and 19.6 ± 1.47% respectively. However, treatment with rPA alone had no significant anti-proliferative effect as evident by low mean inhibition index of 3.4 ± 3.87%. The higher inhibition index observed for rLF alone as compared to LeTx is contrary to the existing knowledge on LF, which explains the requirement of PA dependent endocytosis for its enzymatic activity. Therefore, the plausible existence of PA independent mode of action of LF including direct receptor mediated endocytosis or modulation of signal transduction cascade via unknown means is hypothesized. In silico protein docking analysis of other cellular receptors for any plausibility to play the role of receptor for LF revealed c-Met receptor showing strongest affinity for LF (H bond = 19; Free energy = −773.96), followed by nerve growth factor receptor (NGFR) and human epidermal growth factor receptor (HER)-1. The study summarizes the use of rLF or LeTx as therapeutic molecule against primary mammary ductal carcinoma cells and also the c-Met as potential alternative receptor for LF to mediate and modulate PA independent signal transduction.
Collapse
Affiliation(s)
- Rekha Khandia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India.,Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, India
| | | | - Atul Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Harshad Murugkar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Hare Krishna Pradhan
- Ex-Avian Influenza National Consultant, Indian Office of WHO Consultant, Bhartiya Kala Kendra, New Delhi, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly Uttar Pradesh, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Sunil K Joshi
- Cellular Immunology Laboratory, Frank Reidy Research Center of Bioelectrics, College of Health Sciences, Old Dominion University Norfolk, VA USA
| |
Collapse
|
11
|
Corbo C, Cevenini A, Salvatore F. Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 2017; 11. [PMID: 28019089 DOI: 10.1002/prca.201600072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5-year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large-scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.
Collapse
Affiliation(s)
- Claudia Corbo
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Armando Cevenini
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy
| |
Collapse
|
12
|
Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:82. [PMID: 25992381 DOI: 10.3978/j.issn.2305-5839.2015.03.58] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 01/30/2023]
Abstract
MNNG HOS transforming gene (MET) is a class IV receptor tyrosine kinase, expressed on the surface of epithelial cells. The interaction with the hepatocyte grow factor (HGF) induces MET dimerization and the activation of multiple intracellular pathways leading to cell proliferation, anti-apoptosis, morphogenic differentiation, motility, invasion, and angiogenesis. Knock out mice have demonstrated that MET is necessary for normal embryogenesis including the formation of striate muscles, liver and trophoblastic structures. The overexpression of MET and HGF are common in solid tumors and contribute to determine their growth. Indeed, MET has been cloned as a transforming gene from a chemically induced human osteosarcoma cell line and therefore is considered a proto-oncogene. Germline MET mutations are characteristic of hereditary papillary kidney cancers and MET amplification is observed in tumors including lung and gastric adenocarcinomas. The inhibition of MET signaling is the target for specific drugs that are raising exciting expectation for medical treatment of cancer.
Collapse
|
13
|
Walker N, Kahamba T, Woudberg N, Goetsch K, Niesler C. Dose-dependent modulation of myogenesis by HGF: implications for c-Met expression and downstream signalling pathways. Growth Factors 2015; 33:229-41. [PMID: 26135603 DOI: 10.3109/08977194.2015.1058260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatocyte growth factor (HGF) regulates satellite cell activation, proliferation, and differentiation. We analyzed the dose-dependent effects of HGF on myogenesis. Murine C2C12 and human donor-derived skeletal muscle myoblasts were treated with 0, 2, or 10 ng/ml HGF followed by assessment of proliferation and differentiation. HGF (2 ng/ml) significantly promoted cell division, but reduced myogenic commitment and fusion. Conversely, 10 ng/ml HGF reduced proliferative capability, but increased differentiation. c-Met expression analysis revealed significantly decreased expression in differentiating cells cultured with 2 ng/ml HGF, but increased expression in proliferating cells with 10 ng/ml HGF. Mitogen-activated protein kinase (MAPKs: ERK, JNK, or p38K) and phosphatidylinositol-3-kinase (PI3K) inhibition abrogated the HGF-stimulated increase in cell number. Interestingly, PI3K and p38 kinase facilitated the negative effect of HGF on proliferation, while ERK inhibition abrogated the HGF-mediated decrease in differentiation. Dose-dependent effects of HGF are mediated by changes in c-Met expression and downstream MAPK and PI3K signalling.
Collapse
Affiliation(s)
- Nicholas Walker
- a Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal , Scottsville , South Africa
| | - Trish Kahamba
- a Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal , Scottsville , South Africa
| | - Nicholas Woudberg
- a Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal , Scottsville , South Africa
| | - Kyle Goetsch
- a Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal , Scottsville , South Africa
| | - Carola Niesler
- a Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal , Scottsville , South Africa
| |
Collapse
|
14
|
Lee JK, Joo KM, Lee J, Yoon Y, Nam DH. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther 2014; 7:1933-44. [PMID: 25364264 PMCID: PMC4211615 DOI: 10.2147/ott.s36582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common human primary brain malignancy and has a dismal prognosis. Aggressive treatments using maximal surgical resection, radiotherapy, and temozolomide result in median survival of only 14.6 months in patients with GBM. Numerous clinical approaches using small molecule inhibitors have shown disappointing results because of the genetic heterogeneity of GBM. The epithelial to mesenchymal transition (EMT) is a crucial biological process occurring in the early development stages of many species. However, cancer cells often obtain the ability to invade and metastasize through the EMT, which triggers the scattering of cells. The hepatocyte growth factor (HGF)/MET signaling pathway is indicative of the EMT during both embryogenesis and the invasive growth of tumors, because HGF potently induces mesenchymal transition in epithelial-driven cells. Activation of MET signaling or co-overexpression of HGF and MET frequently represents aggressive growth and poor prognosis of various cancers, including GBM. Thus, efforts to treat cancers by inhibiting MET signaling using neutralizing antibodies or small molecule inhibitors have progressed during the last decade. In this review, we discuss HGF/MET signaling in the development of diseases, including cancers, as well as updates on MET inhibition therapy.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea ; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yeup Yoon
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea ; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Gargalionis AN, Karamouzis MV, Papavassiliou AG. The molecular rationale of Src inhibition in colorectal carcinomas. Int J Cancer 2014; 134:2019-2029. [DOI: 10.1002/ijc.28299] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Src has been one of the most studied proto‐oncogenes. The cellular Src (c‐Src) holds a critical role in several human malignancies and has emerged as a key factor that promotes tumor progression during the multistep process of colorectal cancer (CRC) pathogenesis. The robust activation of Src in CRC of aggressive phenotype and poor prognosis seems to be a subsequent event of a strong link between its deregulated activity and the tumor's cell adhesion properties, invasiveness and metastatic potential. The rarely detected genetic defects drive interest in signaling networks that control Src kinase activity and integrate the association of Src with receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR). Therefore, a dynamic crosstalk is being formed with oncogenic capacity and therapeutic applications, because Src inhibition seems to sensitize previously unresponsive cancer cells to chemotherapy and anti‐EGFR inhibitors. The present review explores the molecular basis behind Src inhibition in colorectal carcinomas. Furthermore, preclinical studies and clinical trials of Src inhibitors and combination regimens are discussed, providing new insights for further investigation and new therapeutic strategies.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Molecular Oncology Unit Department of Biological Chemistry, University of Athens Medical School Athens Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit Department of Biological Chemistry, University of Athens Medical School Athens Greece
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit Department of Biological Chemistry, University of Athens Medical School Athens Greece
| |
Collapse
|
16
|
Wang K, Huang C, Nice EC. Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Rev Proteomics 2014; 11:179-205. [PMID: 24611605 DOI: 10.1586/14789450.2014.894466] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in females and the third in males. Since CRC is often diagnosed at an advanced stage when prognosis is poor, identification of biomarkers for early diagnosis is urgently required. Recent advances in proteomics, genomics and transcriptomics have facilitated high-throughput profiling of data generated from CRC-related genes and proteins, providing a window of information for biomarker discovery and validation. However, transfer of candidate biomarkers from bench to bedside remains a dilemma. In this review, we will discuss emerging proteomic technologies and highlight various sample types utilized for proteomics-based identification of CRC biomarkers. Moreover, recent breakthroughs in genomics and transcriptomics for the identification of CRC biomarkers, with particular emphasis on the merits of emerging methylomic and miRNAomic strategies, will be discussed. Integration of proteomics, genomics and transcriptomics will facilitate the discovery and validation of CRC biomarkers leading to the emergence of personalized medicine.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, 610041 , P.R. China
| | | | | |
Collapse
|
17
|
Martínez-Aguilar J, Chik J, Nicholson J, Semaan C, McKay MJ, Molloy MP. Quantitative mass spectrometry for colorectal cancer proteomics. Proteomics Clin Appl 2014; 7:42-54. [PMID: 23027722 DOI: 10.1002/prca.201200080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022]
Abstract
This review documents the uses of quantitative MS applied to colorectal cancer (CRC) proteomics for biomarker discovery and molecular pathway profiling. Investigators are adopting various labeling and label-free MS approaches to quantitate differential protein levels in cells, tumors, and plasma/serum. We comprehensively review recent uses of this technology to examine mouse models of CRC, CRC cell lines, their secretomes and subcellular fractions, CRC tumors, CRC patient plasma/serum, and stool samples. For biomarker discovery these approaches are uncovering proteins with potential diagnostic and prognostic utility, while in vitro cell culture experiments are characterizing proteomic and phosphoproteomic responses to disrupted signaling pathways due to mutations or to inhibition of drugable enzymes.
Collapse
Affiliation(s)
- Juan Martínez-Aguilar
- Australian Proteome Analysis Facility (APAF), Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, Tsao MS. p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One 2014; 9:e86103. [PMID: 24465899 PMCID: PMC3897622 DOI: 10.1371/journal.pone.0086103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022] Open
Abstract
KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
Collapse
Affiliation(s)
- Shawna L. Organ
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Hai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lisa Leung
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takehiko Sasazuki
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Woodard CL, Goodwin CR, Wan J, Xia S, Newman R, Hu J, Zhang J, Hayward SD, Qian J, Laterra J, Zhu H. Profiling the dynamics of a human phosphorylome reveals new components in HGF/c-Met signaling. PLoS One 2013; 8:e72671. [PMID: 24023761 PMCID: PMC3759380 DOI: 10.1371/journal.pone.0072671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 07/16/2013] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is a dynamic and reversible event that greatly influences cellular function. Identifying the key regulatory elements that determine cellular phenotypes during development and oncogenesis requires the ability to dynamically monitor proteome-wide events. Here, we report the development of a new strategy to monitor dynamic changes of protein phosphorylation in cells and tissues using functional protein microarrays as the readout. To demonstrate this technology's ability to identify condition-dependent phosphorylation events, human protein microarrays were incubated with lysates from cells or tissues under activation or inhibition of c-Met, a receptor tyrosine kinase involved in tissue morphogenesis and malignancy. By comparing the differences between the protein phosphorylation profiles obtained using the protein microarrays, we were able to recover many of the proteins that are known to be specifically activated (i.e., phosphorylated) upon c-Met activation by the hepatocyte growth factor (HGF). Most importantly, we discovered many proteins that were differentially phosphorylated by lysates from cells or tissues when the c-Met pathway was active. Using phosphorylation-specific antibodies, we were able to validate several candidate proteins as new downstream components of the c-Met signaling pathway in cells. We envision that this new approach, like its DNA microarray counterpart, can be further extended toward profiling dynamics of global protein phosphorylation under many different physiological conditions both in cellulo and in vivo in a high-throughput and cost-effective fashion.
Collapse
Affiliation(s)
- Crystal L. Woodard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - C. Rory Goodwin
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Jun Wan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Shuli Xia
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Robert Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jianfei Hu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - S. Diane Hayward
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - John Laterra
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- High Throughput Biology Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
de Wit M, Fijneman RJ, Verheul HM, Meijer GA, Jimenez CR. Proteomics in colorectal cancer translational research: Biomarker discovery for clinical applications. Clin Biochem 2013; 46:466-79. [PMID: 23159294 DOI: 10.1016/j.clinbiochem.2012.10.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/22/2022]
|
21
|
KRC-408, a novel c-Met inhibitor, suppresses cell proliferation and angiogenesis of gastric cancer. Cancer Lett 2013; 332:74-82. [PMID: 23348694 DOI: 10.1016/j.canlet.2013.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
Among many cancer therapeutic targets, c-Met receptor tyrosine kinase has recently given particular attention. This kinase and its ligand, hepatocyte growth factor (HGF), play a central role in cell proliferation and the survival of several human cancers. Thus, we developed KRC-408 as a novel c-Met inhibitor and investigated its anti-cancer effects on human gastric cancer. KRC-408 inhibited the phosphorylation of c-Met and its constitutive downstream effectors such as phosphatidylinositol 3-kinase (PI3K), Akt, Mek, and Erk. This compound was found to exert anti-cancer effects stronger than those of 5-fluorouracil (5-FU) on gastric cancer cells, especially cell lines that overexpressed c-Met. Interestingly, cytotoxicity of KRC-408 was lower than that of 5-FU in normal gastric cells. Apoptosis induced by KRC-408 was accompanied by increased levels of cleaved caspase-3 and PARP as well as DNA condensation and fragmentation. Flow cytometry analysis showed an accumulation of gastric cancer cells in the G2/M phase with concomitant loss of cells in the S phase following treatment with this drug. In the angiogenesis studies, KRC-408 inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs), and suppressed microvessel sprouting from rat aortic rings ex vivo along with blood vessel formation in a Matrigel plug assay in mice. Results of an in vivo mouse xenograft experiment showed that the administration of KRC-408 significantly delayed tumor growth in a dose-dependent manner, and suppressed Akt and Erk phosphorylation as well CD34 expression in tumor tissues. These findings indicate that KCR-408 may exert anti-tumor effects by directly affecting tumor cell growth or survival via the c-Met receptor tyrosine kinase pathway. We therefore suggest that KRC-408 is a novel therapeutic candidate effective against gastric cancers that overexpress c-Met.
Collapse
|
22
|
Abstract
The receptor tyrosine kinase c-MET and its ligand, hepatocyte growth factor (HGF), regulate multiple cellular processes that stimulate cell proliferation, invasion and angiogenesis. This review provides an overview of the evidence to support c-MET or the HGF/c-MET signaling pathway as relevant targets for personalized cancer treatment based on high frequencies of c-MET and/or HGF overexpression, activation, amplification in non-small cell lung carcinoma (NSCLC), gastric, ovarian, pancreatic, thyroid, breast, head and neck, colon and kidney carcinomas. Additionally, the current knowledge of small molecule inhibitors (tivantinib [ARQ 197]), c-MET/HGF antibodies (rilotumumab and MetMAb) and mechanisms of resistance to c-MET-targeted therapies are discussed.
Collapse
Affiliation(s)
- J Rafael Sierra
- Princess Margaret Hospital/Ontario Cancer Institute and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Abstract
c-MET is a receptor tyrosine kinase that, after binding with its ligand, hepatocyte growth factor, activates a wide range of different cellular signaling pathways, including those involved in proliferation, motility, migration and invasion. Although c-MET is important in the control of tissue homeostasis under normal physiological conditions, it has also been found to be aberrantly activated in human cancers via mutation, amplification or protein overexpression. This paper provides an overview of the c-MET signaling pathway, including its role in the development of cancers, and provides a rationale for targeting the pathway as a possible treatment option.
Collapse
|