1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Cruz-Ojeda PDL, Navarro-Villarán E, Fuertes-Agudo M, Mata A, López-Lluch G, Navas P, Cadenas S, Casado M, Muntané J. Peroxynitrite is involved in the mitochondrial dysfunction induced by Sorafenib in liver cancer cells. Free Radic Biol Med 2025; 229:251-263. [PMID: 39743028 DOI: 10.1016/j.freeradbiomed.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Sorafenib is a tyrosine kinase inhibitor (TKI) that belongs to the landscape of treatments for advanced stages of hepatocellular carcinoma (HCC). The induction of cell death and cell cycle arrest by Sorafenib has been associated with mitochondrial dysfunction in liver cancer cells. Our research aim was to decipher underlying oxidative and nitrosative stress induced by Sorafenib leading to mitochondrial dysfunction in liver cancer cells. METHODS MnTBAP, catalase and the scavenger of peroxynitrite FeTPPs were administered to Sorafenib (0-10 μM)-treated HepG2 cells. Oxygen consumption and glycolytic flux were determined in cultured cells. Mitochondrial complex activities were measured in mitochondrial fraction and cell lysates. The protein and mRNA expression of subunits of electron transport chain (ETC) were assessed by immunoblot and RNA-seq. RESULTS Sorafenib (10 μM) increased nitric oxide (NO) and superoxide anion (O2.-) leading to peroxynitrite generation, and drastically reduced oxygen consumption. Moreover, Sorafenib led to mitochondrial network disorganization and loss of membrane potential. The administration of FeTPPs influenced the recovery of mitochondrial network and oxygen consumption, as well as associated ATP production. Sorafenib downregulated the mRNA expression of all mitochondrial-encoded subunits of ETC and, at to a lesser extent, nuclear-encoded mitochondrial genes. The protein expression of complex I, complex III and complex IV was greatly affected by Sorafenib. Furthermore, Sorafenib diminished the activity of complex I in in-gel assays, whose expression and activity were restored by FeTPPs. However, Sorafenib did not affect the assembly of mitochondrial supercomplexes. Sorafenib altered glycolysis and reduced Krebs cycle intermediates and increased NAD/NADH ratio. CONCLUSIONS The induction of cell death by Sorafenib was associated with peroxynitrite generation, which impacted the expression of ETC subunits and mitochondrial functionality in liver cancer cells.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen Del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen Del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marina Fuertes-Agudo
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; Institute of Biomedicine of Valencia (IBV), CSIC, Jaume Roig 11, 46010, Valencia, Spain; Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the Instituto de Biomedicina de Valencia (IBV), Valencia, Spain
| | - Ana Mata
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre for Developmental Biology, University Pablo of Olavide, Seville, Spain; Biomedical Research Center for Rare Diseases (CIBERer), Madrid, Spain
| | - Plácido Navas
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre for Developmental Biology, University Pablo of Olavide, Seville, Spain; Biomedical Research Center for Rare Diseases (CIBERer), Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Marta Casado
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; Institute of Biomedicine of Valencia (IBV), CSIC, Jaume Roig 11, 46010, Valencia, Spain; Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the Instituto de Biomedicina de Valencia (IBV), Valencia, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen Del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.
| |
Collapse
|
3
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Wei J, Wang Z, Wang W, Liu X, Wan J, Yuan Y, Li X, Ma L, Liu X. Oxidative Stress Activated by Sorafenib Alters the Temozolomide Sensitivity of Human Glioma Cells Through Autophagy and JAK2/STAT3-AIF Axis. Front Cell Dev Biol 2021; 9:660005. [PMID: 34277607 PMCID: PMC8282178 DOI: 10.3389/fcell.2021.660005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The development of temozolomide (TMZ) resistance in glioma leads to poor patient prognosis. Sorafenib, a novel diaryl urea compound and multikinase inhibitor, has the ability to effectively cross the blood-brain barrier. However, the effect of sorafenib on glioma cells and the molecular mechanism underlying the ability of sorafenib to enhance the antitumor effects of TMZ remain elusive. Here, we found that sorafenib could enhance the cytotoxic effects of TMZ in glioma cells in vitro and in vivo. Mechanistically, the combination of sorafenib and TMZ induced mitochondrial depolarization and apoptosis inducing factor (AIF) translocation from mitochondria to nuclei, and this process was dependent on STAT3 inhibition. Moreover, the combination of sorafenib and TMZ inhibited JAK2/STAT3 phosphorylation and STAT3 translocation to mitochondria. Inhibition of STAT3 activation promoted the autophagy-associated apoptosis induced by the combination of sorafenib and TMZ. Furthermore, the combined sorafenib and TMZ treatment induced oxidative stress while reactive oxygen species (ROS) clearance reversed the treatment-induced inhibition of JAK2/STAT3. The results indicate that sorafenib enhanced the temozolomide sensitivity of human glioma cells by inducing oxidative stress-mediated autophagy and JAK2/STAT3-AIF axis.
Collapse
Affiliation(s)
- Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoge Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Antunes F, Pereira GJS, Saito RF, Buri MV, Gagliardi M, Bincoletto C, Chammas R, Fimia GM, Piacentini M, Corazzari M, Smaili SS. Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress. Cells 2020; 9:E640. [PMID: 32155825 PMCID: PMC7140454 DOI: 10.3390/cells9030640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
Skin melanoma is one of the most aggressive and difficult-to-treat human malignancies, characterized by poor survival rates, thus requiring urgent novel therapeutic approaches. Although metabolic reprogramming has represented so far, a cancer hallmark, accumulating data indicate a high plasticity of cancer cells in modulating cellular metabolism to adapt to a heterogeneous and continuously changing microenvironment, suggesting a novel therapeutic approach for dietary manipulation in cancer therapy. To this aim, we exposed melanoma cells to combined nutrient-restriction/sorafenib. Results indicate that cell death was efficiently induced, with apoptosis representing the prominent feature. In contrast, autophagy was blocked in the final stage by this treatment, similarly to chloroquine, which also enhanced melanoma cell sensitization to combined treatment. Energy stress was evidenced by associated treatment with mitochondrial dysfunction and glycolysis impairment, suggesting metabolic stress determining melanoma cell death. A reduction of tumor growth after cycles of intermittent fasting together with sorafenib treatment was also observed in vivo, reinforcing that the nutrient shortage can potentiate anti-melanoma therapy. Our findings showed that the restriction of nutrients by intermittent fasting potentiates the effects of sorafenib due to the modulation of cellular metabolism, suggesting that it is possible to harness the energy of cancer cells for the treatment of melanoma.
Collapse
Affiliation(s)
- Fernanda Antunes
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Renata F. Saito
- Center for Translational Research in Oncology, Department of Radiology and Oncology, Faculty of Medicine of the University of São Paulo and Cancer Institute of the State of São Paulo, São Paulo 04021-001, Brazil; (R.F.S.); (R.C.)
| | - Marcus V. Buri
- Department of Molecular Biology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil;
| | - Mara Gagliardi
- Department of Health Sciences (DISS), University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Roger Chammas
- Center for Translational Research in Oncology, Department of Radiology and Oncology, Faculty of Medicine of the University of São Paulo and Cancer Institute of the State of São Paulo, São Paulo 04021-001, Brazil; (R.F.S.); (R.C.)
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy; (G.M.F.); (M.P.)
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy; (G.M.F.); (M.P.)
- Institute of Cytology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Marco Corazzari
- Department of Health Sciences (DISS), University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| |
Collapse
|
6
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Barbosa AM, Martel F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 2020; 12:cancers12010154. [PMID: 31936350 PMCID: PMC7016663 DOI: 10.3390/cancers12010154] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be a cancer hallmark. The deviant energetic metabolism of cancer cells-known as the Warburg effect-consists in much higher rates of glucose uptake and glycolytic oxidation coupled with the production of lactic acid, even in the presence of oxygen. Consequently, cancer cells have higher glucose needs and thus display a higher sensitivity to glucose deprivation-induced death than normal cells. So, inhibitors of glucose uptake are potential therapeutic targets in cancer. Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death in women worldwide. Overexpression of facilitative glucose transporters (GLUT), mainly GLUT1, in breast cancer cells is firmly established, and the consequences of GLUT inhibition and/or knockout are under investigation. Herein we review the compounds, both of natural and synthetic origin, found to interfere with uptake of glucose by breast cancer cells, and the consequences of interference with that mechanism on breast cancer cell biology. We will also present data where the interaction with GLUT is exploited in order to increase the efficiency or selectivity of anticancer agents, in breast cancer cells.
Collapse
Affiliation(s)
- Ana M. Barbosa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4169-007 Porto, Portugal;
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-042-6654
| |
Collapse
|
8
|
Heslop KA, Rovini A, Hunt EG, Fang D, Morris ME, Christie CF, Gooz MB, DeHart DN, Dang Y, Lemasters JJ, Maldonado EN. JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. Biochem Pharmacol 2020; 171:113728. [PMID: 31759978 PMCID: PMC7309270 DOI: 10.1016/j.bcp.2019.113728] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The multikinase inhibitor sorafenib, and opening of voltage dependent anion channels (VDAC) by the erastin-like compound X1 promotes oxidative stress and mitochondrial dysfunction in hepatocarcinoma cells. Here, we hypothesized that X1 and sorafenib induce mitochondrial dysfunction by increasing reactive oxygen species (ROS) formation and activating c-Jun N-terminal kinases (JNKs), leading to translocation of activated JNK to mitochondria. Both X1 and sorafenib increased production of ROS and activated JNK. X1 and sorafenib caused a drop in mitochondrial membrane potential (ΔΨ), a readout of mitochondrial metabolism, after 60 min. Mitochondrial depolarization after X1 and sorafenib occurred in parallel with JNK activation, increased superoxide (O2•-) production, decreased basal and oligomycin sensitive respiration, and decreased maximal respiratory capacity. Increased production of O2•- after X1 or sorafenib was abrogated by JNK inhibition and antioxidants. S3QEL 2, a specific inhibitor of site IIIQo, at Complex III, prevented depolarization induced by X1. JNK inhibition by JNK inhibitors VIII and SP600125 also prevented mitochondrial depolarization. After X1, activated JNK translocated to mitochondria as assessed by proximity ligation assays. Tat-Sab KIM1, a peptide selectively preventing the binding of JNK to the outer mitochondrial membrane protein Sab, blocked the depolarization induced by X1 and sorafenib. X1 promoted cell death mostly by necroptosis that was partially prevented by JNK inhibition. These results indicate that JNK activation and translocation to mitochondria is a common mechanism of mitochondrial dysfunction induced by both VDAC opening and sorafenib.
Collapse
Affiliation(s)
- K A Heslop
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - A Rovini
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - E G Hunt
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - D Fang
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - M E Morris
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - C F Christie
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - M B Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - D N DeHart
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Y Dang
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - J J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - E N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
9
|
Bai J, Liu Z, Liu J, Zhang S, Tian Y, Zhang Y, Ren L, Kong D. Mitochondrial metabolic study guided by proteomics analysis in hepatocellular carcinoma cells surviving long-term incubation with the highest dose of sorafenib. Aging (Albany NY) 2019; 11:12452-12475. [PMID: 31881007 PMCID: PMC6949094 DOI: 10.18632/aging.102582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 04/19/2023]
Abstract
Sorafenib is the standard first-line systemic therapy for hepatocellular carcinoma (HCC). However, the low objective response rates in clinical studies suggest the existence of certain HCC cells that are inherently insensitive to sorafenib. To understand the molecular basis of insensitivity of HCC cells to sorafenib, this study developed 3 kinds of insensitive HCC cells through exposure to various concentrations of sorafenib and performed a quantitative proteome analysis of the surviving HepG2 cells. 520 unique proteins were concentration-dependently upregulated by sorafenib. Bioinformatics-assisted analysis of 520 proteins revealed that the metabolic pathways involved in central carbon metabolism were significantly enriched, and 102 mitochondrial proteins, especially components of the electron transport chain (ETC), were incrementally upregulated in the 3 kinds of insensitive cells. Conversely, we identified a rapid holistic inhibitory effect of sorafenib on mitochondrial function by the direct targeting of the complex I-linked electron transport and the uncoupling of mitochondrial oxidative phosphorylation (OXHPOS) in HCC cells. Core metabolic reprogramming involved in a compensatory upregulation of OXHPOS combined with elevated glycolysis supports the survival of HCC cells under the highest dose of sorafenib treatment. Altogether, our work thus elaborates an ETC inhibitor and unveils the proteomic landscape of metabolic reprogramming in drug insensitivity.
Collapse
Affiliation(s)
- Jing Bai
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ziqi Liu
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiang Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Saihang Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yuan Tian
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Leiming Ren
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Dezhi Kong
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| |
Collapse
|
10
|
ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery. Nat Commun 2019; 10:5715. [PMID: 31844049 PMCID: PMC6915695 DOI: 10.1038/s41467-019-13582-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023] Open
Abstract
Deconvolution of targets and action mechanisms of anticancer compounds is fundamental in drug development. Here, we report on ProTargetMiner as a publicly available expandable proteome signature library of anticancer molecules in cancer cell lines. Based on 287 A549 adenocarcinoma proteomes affected by 56 compounds, the main dataset contains 7,328 proteins and 1,307,859 refined protein-drug pairs. These proteomic signatures cluster by compound targets and action mechanisms. The targets and mechanistic proteins are deconvoluted by partial least square modeling, provided through the website http://protargetminer.genexplain.com. For 9 molecules representing the most diverse mechanisms and the common cancer cell lines MCF-7, RKO and A549, deep proteome datasets are obtained. Combining data from the three cell lines highlights common drug targets and cell-specific differences. The database can be easily extended and merged with new compound signatures. ProTargetMiner serves as a chemical proteomics resource for the cancer research community, and can become a valuable tool in drug discovery. Anticancer drugs often have widespread effects on the cellular proteome. Here, the authors generate a proteome signature library of drug-treated cancer cell lines and develop a software tool to deconvolute drug targets and gain insights into their mechanisms of action.
Collapse
|
11
|
Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, Ocker M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci 2019; 20:5266. [PMID: 31652839 PMCID: PMC6862076 DOI: 10.3390/ijms20215266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is the central metabolic organ of mammals. In humans, most diseases of the liver are primarily caused by an unhealthy lifestyle-high fat diet, drug and alcohol consumption- or due to infections and exposure to toxic substances like aflatoxin or other environmental factors. All these noxae cause changes in the metabolism of functional cells in the liver. In this literature review we focus on the changes at the miRNA level, the formation and impact of reactive oxygen species and the crosstalk between those factors. Both, miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic liver diseases, as well as in viral hepatitis and carcinogenesis, by influencing numerous signaling and metabolic pathways. Furthermore, expression patterns of miRNAs and antioxidants can be used for biomonitoring the course of disease and show potential to serve as possible therapeutic targets.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Till Wissniowski
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, 35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, 13353 Berlin, Germany.
- Department of Gastroenterology CBF, Charité University Medicine Berlin, 12200 Berlin, Germany.
| |
Collapse
|
12
|
Le NQK, Yapp EKY, Yeh HY. ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins. BMC Bioinformatics 2019; 20:377. [PMID: 31277574 PMCID: PMC6612191 DOI: 10.1186/s12859-019-2972-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/27/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Electron transport chain is a series of protein complexes embedded in the process of cellular respiration, which is an important process to transfer electrons and other macromolecules throughout the cell. It is also the major process to extract energy via redox reactions in the case of oxidation of sugars. Many studies have determined that the electron transport protein has been implicated in a variety of human diseases, i.e. diabetes, Parkinson, Alzheimer's disease and so on. Few bioinformatics studies have been conducted to identify the electron transport proteins with high accuracy, however, their performance results require a lot of improvements. Here, we present a novel deep neural network architecture to address this problem. RESULTS Most of the previous studies could not use the original position specific scoring matrix (PSSM) profiles to feed into neural networks, leading to a lack of information and the neural networks consequently could not achieve the best results. In this paper, we present a novel approach by using deep gated recurrent units (GRU) on full PSSMs to resolve this problem. Our approach can precisely predict the electron transporters with the cross-validation and independent test accuracy of 93.5 and 92.3%, respectively. Our approach demonstrates superior performance to all of the state-of-the-art predictors on electron transport proteins. CONCLUSIONS Through the proposed study, we provide ET-GRU, a web server for discriminating electron transport proteins in particular and other protein functions in general. Also, our achievement could promote the use of GRU in computational biology, especially in protein function prediction.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, Singapore, 639798 Singapore
| | - Edward Kien Yee Yapp
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, Singapore, 138634 Singapore
| | - Hui-Yuan Yeh
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, Singapore, 639798 Singapore
| |
Collapse
|
13
|
Liu G, Kuang S, Cao R, Wang J, Peng Q, Sun C. Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR-SREBP1 signaling pathway. FASEB J 2019; 33:10089-10103. [PMID: 31199678 DOI: 10.1096/fj.201802619rr] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sorafenib is a multikinase inhibitor that is effective in treating advanced liver cancer. Although its mechanism of action through several established cancer-related protein kinase targets is well-characterized, sorafenib induces variable responses among human tumors, and the cause for this variation is yet unknown. To investigate the underlying mechanisms, we applied mass spectrometry-based proteomic analysis to Huh7.5 human liver cancer cells and found that sorafenib significantly affected the expression of the key lipogenic enzymes, especially stearoyl coenzyme A desaturase 1 (SCD1), in these cells. Given that SCD1 catalyzes the most crucial and rate-limiting step in the synthesis of monounsaturated fatty acids (FAs), we performed a lipidomic analysis, which showed a dramatically altered lipid profile in sorafenib-treated cells. Detection and analysis of free FAs showed that the levels of monounsaturated FAs, including oleate, were significantly decreased in those cells treated by sorafenib. Addition of oleate protected liver cancer cells from sorafenib-induced death and alleviated the abnormalities of mitochondrial morphology and function caused by the drug. Treatment with sorafenib suppressed ATP production, resulting in AMPK activation via phosphorylation. Further secondary effects included reduction of the levels of sterol regulatory element-binding protein 1 (SREBP1) and the phosphorylation of mammalian target of rapamycin (mTOR) in liver cancer cells. These effects were partly abolished in the presence of compound C (an AMPK inhibitor) and ATP and adenosine, and SREBP1c overexpression also could be resistant to the effects of sorafenib, suggesting that the sorafenib-induced reduction in cell viability was mediated by the ATP-AMPK-mTOR-SREBP1 signaling pathway. Taken together, our results suggest that sorafenib's anticancer activity in liver cancer cells is based on the inhibition of ATP production, SCD1 expression, and monounsaturated FA synthesis. In addition, the decreased monounsaturated FA synthesis further triggered the more serious reduction of ATP production in sorafenib-treated cells. To our knowledge, this is the first evidence that sorafenib disrupts lipogenesis and triggers liver cancer cell death by targeting SCD1 through the ATP-AMPK-mTOR-SREBP1 pathway.-Liu, G., Kuang, S., Cao, R., Wang, J., Peng, Q., Sun, C. Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR- SREBP1 signaling pathway.
Collapse
Affiliation(s)
- Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shan Kuang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruobing Cao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ju Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quancai Peng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
14
|
Aminzadeh-Gohari S, Feichtinger RG, Kofler B. Energy Metabolism and Metabolic Targeting of Neuroblastoma. NEUROBLASTOMA 2019:113-132. [DOI: 10.1016/b978-0-12-812005-7.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
16
|
Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells. Toxicology 2018; 395:34-44. [PMID: 29341879 DOI: 10.1016/j.tox.2018.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/23/2017] [Accepted: 01/12/2018] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that certain kinase inhibitors are mitochondrial toxicants. In the current investigation, we determined the mechanisms of mitochondrial impairment by the kinase inhibitors ponatinib, regorafenib, and sorafenib in more detail. In HepG2 cells cultured in galactose and exposed for 24 h, all three kinase inhibitors investigated depleted the cellular ATP pools at lower concentrations than cytotoxicity occurred, compatible with mitochondrial toxicity. The kinase inhibitors impaired the activity of different complexes of the respiratory chain in HepG2 cells exposed to the toxicants for 24 h and in isolated mouse liver mitochondria exposed acutely. As a consequence, they increased mitochondrial production of ROS in HepG2 cells in a time- and concentration-dependent fashion and decreased the mitochondrial membrane potential concentration-dependently. In HepG2 cells exposed for 24 h, they induced mitochondrial fragmentation, lysosome content and mitophagy as well as mitochondrial release of cytochrome c, leading to apoptosis and/or necrosis. In conclusion, the kinase inhibitors ponatinib, regorafenib, and sorafenib impaired the function of the respiratory chain, which was associated with increased ROS production and a drop in the mitochondrial membrane potential. Despite activation of defense measures such as mitochondrial fission and mitophagy, some cells were liquidated concentration-dependently by apoptosis or necrosis. Mitochondrial dysfunction may represent a toxicological mechanism of hepatotoxicity associated with certain kinase inhibitors.
Collapse
|
17
|
Zhang C, Liu Z, Bunker E, Ramirez A, Lee S, Peng Y, Tan AC, Eckhardt SG, Chapnick DA, Liu X. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem 2017; 292:15105-15120. [PMID: 28673964 DOI: 10.1074/jbc.m117.783175] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Sorafenib (Nexavar) is a broad-spectrum multikinase inhibitor that proves effective in treating advanced renal-cell carcinoma and liver cancer. Despite its well-characterized mechanism of action on several established cancer-related protein kinases, sorafenib causes variable responses among human tumors, although the cause for this variation is unknown. In an unbiased screening of an oncology drug library, we found that sorafenib activates recruitment of the ubiquitin E3 ligase Parkin to damaged mitochondria. We show that sorafenib inhibits the activity of both complex II/III of the electron transport chain and ATP synthase. Dual inhibition of these complexes, but not inhibition of each individual complex, stabilizes the serine-threonine protein kinase PINK1 on the mitochondrial outer membrane and activates Parkin. Unlike the protonophore carbonyl cyanide m-chlorophenylhydrazone, which activates the mitophagy response, sorafenib treatment triggers PINK1/Parkin-dependent cellular apoptosis, which is attenuated upon Bcl-2 overexpression. In summary, our results reveal a new mechanism of action for sorafenib as a mitocan and suggest that high Parkin activity levels could make tumor cells more sensitive to sorafenib's actions, providing one possible explanation why Parkin may be a tumor suppressor gene. These insights could be useful in developing new rationally designed combination therapies with sorafenib.
Collapse
Affiliation(s)
- Conggang Zhang
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Zeyu Liu
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Eric Bunker
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Adrian Ramirez
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Schuyler Lee
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Yinghua Peng
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Aik-Choon Tan
- the Developmental Therapeutics Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - S Gail Eckhardt
- the Developmental Therapeutics Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Douglas A Chapnick
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Xuedong Liu
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| |
Collapse
|
18
|
Gillissen B, Richter A, Richter A, Preissner R, Schulze-Osthoff K, Essmann F, Daniel PT. Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. J Biol Chem 2017; 292:6478-6492. [PMID: 28154184 DOI: 10.1074/jbc.m116.754184] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) is polyresistant to chemo- and radiotherapy and biologicals, including TNF-related apoptosis-inducing ligand (TRAIL). Sorafenib, a multikinase inhibitor approved for the treatment of RCC, has been shown to sensitize cancer cells to TRAIL-induced apoptosis, in particular by down-regulation of the Bak-inhibitory Bcl-2 family protein Mcl-1. Here we demonstrate that sorafenib overcomes TRAIL resistance in RCC by a mechanism that does not rely on Mcl-1 down-regulation. Instead, sorafenib induces rapid dissipation of the mitochondrial membrane potential (ΔΨm) that is accompanied by the accumulation of reactive oxygen species (ROS). Loss of ΔΨm and ROS production induced by sorafenib are independent of caspase activities and do not depend on the presence of the proapoptotic Bcl-2 family proteins Bax or Bak, indicating that both events are functionally upstream of the mitochondrial apoptosis signaling cascade. More intriguingly, we find that it is sorafenib-induced ROS accumulation that enables TRAIL to activate caspase-8 in RCC. This leads to apoptosis that involves activation of an amplification loop via the mitochondrial apoptosis pathway. Thus, our mechanistic data indicate that sorafenib bypasses central resistance mechanisms through a direct induction of ΔΨm breakdown and ROS production. Activation of this pathway might represent a useful strategy to overcome the cell-inherent resistance to cancer therapeutics, including TRAIL, in multiresistant cancers such as RCC.
Collapse
Affiliation(s)
- Bernhard Gillissen
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Anja Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany.,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Antje Richter
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany
| | - Robert Preissner
- the Institute of Physiology and Experimental Clinical Research Center, University Medical Center Charité, 13125 Berlin, Germany
| | - Klaus Schulze-Osthoff
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Frank Essmann
- the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,the Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, and
| | - Peter T Daniel
- From the Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Campus Berlin-Buch, Humboldt University, Berlin, Germany, .,the German Cancer Consortium and German Cancer Research Center, Im Neuenheimer Feld, 69120 Heidelberg, Germany.,Clinical and Molecular Oncology, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| |
Collapse
|
19
|
Zhang J, Salminen A, Yang X, Luo Y, Wu Q, White M, Greenhaw J, Ren L, Bryant M, Salminen W, Papoian T, Mattes W, Shi Q. Effects of 31 FDA approved small-molecule kinase inhibitors on isolated rat liver mitochondria. Arch Toxicol 2016; 91:2921-2938. [PMID: 28032146 PMCID: PMC5515969 DOI: 10.1007/s00204-016-1918-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
Abstract
The FDA has approved 31 small-molecule kinase inhibitors (KIs) for human use as of November 2016, with six having black box warnings for hepatotoxicity (BBW-H) in product labeling. The precise mechanisms and risk factors for KI-induced hepatotoxicity are poorly understood. Here, the 31 KIs were tested in isolated rat liver mitochondria, an in vitro system recently proposed to be a useful tool to predict drug-induced hepatotoxicity in humans. The KIs were incubated with mitochondria or submitochondrial particles at concentrations ranging from therapeutic maximal blood concentrations (Cmax) levels to 100-fold Cmax levels. Ten endpoints were measured, including oxygen consumption rate, inner membrane potential, cytochrome c release, swelling, reactive oxygen species, and individual respiratory chain complex (I–V) activities. Of the 31 KIs examined only three including sorafenib, regorafenib and pazopanib, all of which are hepatotoxic, caused significant mitochondrial toxicity at concentrations equal to the Cmax, indicating that mitochondrial toxicity likely contributes to the pathogenesis of hepatotoxicity associated with these KIs. At concentrations equal to 100-fold Cmax, 18 KIs were found to be toxic to mitochondria, and among six KIs with BBW-H, mitochondrial injury was induced by regorafenib, lapatinib, idelalisib, and pazopanib, but not ponatinib, or sunitinib. Mitochondrial liability at 100-fold Cmax had a positive predictive power (PPV) of 72% and negative predictive power (NPV) of 33% in predicting human KI hepatotoxicity as defined by product labeling, with the sensitivity and specificity being 62% and 44%, respectively. Similar predictive power was obtained using the criterion of Cmax ≥1.1 µM or daily dose ≥100 mg. Mitochondrial liability at 1–2.5-fold Cmax showed a 100% PPV and specificity, though the NPV and sensitivity were 32% and 14%, respectively. These data provide novel mechanistic insights into KI hepatotoxicity and indicate that mitochondrial toxicity at therapeutic levels can help identify hepatotoxic KIs.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Alec Salminen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.,Biomedical Engineering 2016, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Yong Luo
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Matthew White
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - James Greenhaw
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - William Salminen
- ProNatural Brands LLC, 1174 Southwest 5th Avenue, Boca Raton, FL, 33432, USA
| | - Thomas Papoian
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - William Mattes
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
20
|
Stefanovic M, Tutusaus A, Martinez-Nieto GA, Bárcena C, de Gregorio E, Moutinho C, Barbero-Camps E, Villanueva A, Colell A, Marí M, García-Ruiz C, Fernandez-Checa JC, Morales A. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget 2016; 7:8253-67. [PMID: 26811497 PMCID: PMC4884990 DOI: 10.18632/oncotarget.6982] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/13/2016] [Indexed: 01/26/2023] Open
Abstract
Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly established. Our data reveals that ceramide-modifying enzymes, particularly glucosylceramide synthase (GCS), are upregulated during sorafenib treatment in hepatoma cells (HepG2 and Hep3B), and more importantly, in sorafenib-resistant cell lines. GCS silencing or pharmacological GCS inhibition sensitized hepatoma cells to sorafenib exposure. GCS inhibition, combined with sorafenib, triggered cytochrome c release and ATP depletion in sorafenib-treated hepatoma cells, leading to mitochondrial cell death after energetic collapse. Conversely, genetic GCS overexpression increased sorafenib resistance. Of interest, GCS inhibition improved sorafenib effectiveness in a xenograft mouse model, recovering drug sensitivity of sorafenib-resistant tumors in mice. In conclusion, our results reveal GCS induction as a mechanism of sorafenib resistance, suggesting that GCS targeting may be a novel strategy to increase sorafenib efficacy in HCC management, and point to target the mitochondria as the subcellular location where sorafenib therapy could be potentiated.
Collapse
Affiliation(s)
- Milica Stefanovic
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | | | - Cristina Bárcena
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Estefania de Gregorio
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Elisabet Barbero-Camps
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology - Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain.,Liver Unit, Hospital Clinic, CIBEREHD, Barcelona, Catalonia, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain.,Liver Unit, Hospital Clinic, CIBEREHD, Barcelona, Catalonia, Spain.,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of The University of Southern California, Los Angeles, CA, USA
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Bastian A, Matsuzaki S, Humphries KM, Pharaoh GA, Doshi A, Zaware N, Gangjee A, Ihnat MA. AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Lett 2016; 388:149-157. [PMID: 27939695 DOI: 10.1016/j.canlet.2016.11.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Cancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization. This study defines the molecular effects of AG311 on the mitochondria to elucidate its observed efficacy. AG311 was found to competitively inhibit complex I activity at the ubiquinone-binding site. Complex I as a target for AG311 was further established by measuring oxygen consumption rate in tumor tissue isolated from AG311-treated mice. Cotreatment of cells and animals with AG311 and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor that increases oxidative metabolism, resulted in synergistic cell kill and reduced tumor growth. The inhibition of mitochondrial oxygen consumption by AG311 was found to reduce HIF-1α stabilization by increasing oxygen tension in hypoxic conditions. Taken together, these results suggest that AG311 at least partially mediates its antitumor effect through inhibition of complex I, which could be exploited in its use as an anticancer agent.
Collapse
Affiliation(s)
- Anja Bastian
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Satoshi Matsuzaki
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Kenneth M Humphries
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Gavin A Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Nilesh Zaware
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Michael A Ihnat
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States.
| |
Collapse
|
22
|
Rouleau L, Antony AN, Bisetto S, Newberg A, Doria C, Levine M, Monti DA, Hoek JB. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity. Free Radic Biol Med 2016; 95:308-322. [PMID: 27036367 PMCID: PMC4867251 DOI: 10.1016/j.freeradbiomed.2016.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022]
Abstract
We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance.
Collapse
Affiliation(s)
- Lauren Rouleau
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anil Noronha Antony
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sara Bisetto
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Newberg
- Jefferson-Myrna Brind Center of Integrative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Cataldo Doria
- Division of Transplantation, Liver Tumor Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Daniel A Monti
- Jefferson-Myrna Brind Center of Integrative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jan B Hoek
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Cheng Y, Kerppola RE, Kerppola TK. ATR-101 disrupts mitochondrial functions in adrenocortical carcinoma cells and in vivo. Endocr Relat Cancer 2016; 23:1-19. [PMID: 26843528 PMCID: PMC4887102 DOI: 10.1530/erc-15-0527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 12/26/2022]
Abstract
Adrenocortical carcinoma (ACC) generally has poor prognosis. Existing treatments provide limited benefit for most patients with locally advanced or metastatic tumors. We investigated the mechanisms for the cytotoxicity, xenograft suppression, and adrenalytic activity of ATR-101 (PD132301-02), a prospective agent for ACC treatment. Oral administration of ATR-101 inhibited the establishment and impeded the growth of ACC-derived H295R cell xenografts in mice. ATR-101 induced H295R cell apoptosis in culture and in xenografts. ATR-101 caused mitochondrial hyperpolarization, reactive oxygen release, and ATP depletion within hours after exposure, followed by cytochrome c release, caspase-3/7 activation, and membrane permeabilization. The increase in mitochondrial membrane potential occurred concurrently with the decrease in cellular ATP levels. When combined with ATR-101, lipophilic free radical scavengers suppressed the reactive oxygen release, and glycolytic precursors prevented the ATP depletion, abrogating ATR-101 cytotoxicity. ATR-101 directly inhibited F1F0-ATPase activity and suppressed ATP synthesis in mitochondrial fractions. ATR-101 administration to guinea pigs caused oxidized lipofuscin accumulation in the zona fasciculate layer of the adrenal cortex, implicating reactive oxygen release in the adrenalytic effect of ATR-101. These results support the development of ATR-101 and other adrenalytic compounds for the treatment of ACC.
Collapse
Affiliation(s)
- Yunhui Cheng
- Department of Biological ChemistryUniversity of Michigan, Ann Arbor, MI, USA
| | | | - Tom Klaus Kerppola
- Department of Biological ChemistryUniversity of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Tesori V, Piscaglia AC, Samengo D, Barba M, Bernardini C, Scatena R, Pontoglio A, Castellini L, Spelbrink JN, Maulucci G, Puglisi MA, Pani G, Gasbarrini A. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. Sci Rep 2015; 5:9149. [PMID: 25779766 PMCID: PMC4361992 DOI: 10.1038/srep09149] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022] Open
Abstract
Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5-5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies.
Collapse
Affiliation(s)
- Valentina Tesori
- Institute of Internal Medicine and Gastroenterology, Catholic University of the Sacred Heart School of Medicine
| | - Anna Chiara Piscaglia
- Institute of Internal Medicine and Gastroenterology, Catholic University of the Sacred Heart School of Medicine
| | - Daniela Samengo
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University of the Sacred Heart School of Medicine
| | - Marta Barba
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart School of Medicine
| | - Camilla Bernardini
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart School of Medicine
| | - Roberto Scatena
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the sacred Heart School of Medicine
| | - Alessandro Pontoglio
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the sacred Heart School of Medicine
| | - Laura Castellini
- Department of Radiation Oncology, Center for Clinical Sciences Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Institute of Biomedical Technology &Tampere University Hospital, Pirkanmaa Hospital District, University of Tampere, FI-33014, Finland
| | - Giuseppe Maulucci
- Institute of Physics, Catholic University of the Sacred Heart School of Medicine
| | - Maria Ausiliatrice Puglisi
- Institute of Internal Medicine and Gastroenterology, Catholic University of the Sacred Heart School of Medicine
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University of the Sacred Heart School of Medicine
| | - Antonio Gasbarrini
- Institute of Internal Medicine and Gastroenterology, Catholic University of the Sacred Heart School of Medicine
| |
Collapse
|
25
|
Gillani TB, Rawling T, Murray M. Cytochrome P450-Mediated Biotransformation of Sorafenib and Its N-Oxide Metabolite: Implications for Cell Viability and Human Toxicity. Chem Res Toxicol 2014; 28:92-102. [DOI: 10.1021/tx500373g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tina B. Gillani
- Pharmacogenomics
and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School
of Pharmacy, Graduate School of Health, University of Technology, Sydney, PO
Box 123, Broadway, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics
and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat 2013; 141:67-78. [PMID: 23963659 DOI: 10.1007/s10549-013-2668-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports the need for going on with clinical trials aimed at proving the efficacy of sorafenib for breast cancer treatment.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Via Volturno, 39, Parma 43125, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Application of proteomics to soft tissue sarcomas. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:876401. [PMID: 22778956 PMCID: PMC3388341 DOI: 10.1155/2012/876401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/21/2012] [Indexed: 01/27/2023]
Abstract
Soft tissue sarcomas are rare and account for less than 1% of all malignant cancers. Other than development of intensive therapies, the clinical outcome of patients with soft tissue sarcoma remains very poor, particularly when diagnosed at a late stage. Unique mutations have been associated with certain soft tissue sarcomas, but their etiologies remain unknown. The proteome is a functional translation of a genome, which directly regulates the malignant features of tumors. Thus, proteomics is a promising approach for investigating soft tissue sarcomas. Various proteomic approaches and clinical materials have been used to address clinical and biological issues, including biomarker development, molecular target identification, and study of disease mechanisms. Several cancer-associated proteins have been identified using conventional technologies such as 2D-PAGE, mass spectrometry, and array technology. The functional backgrounds of proteins identified were assessed extensively using in vitro experiments, thus supporting expression analysis. These observations demonstrate the applicability of proteomics to soft tissue sarcoma studies. However, the sample size in each study was insufficient to allow conclusive results. Given the low frequency of soft tissue sarcomas, multi-institutional collaborations are required to validate the results of proteomic approaches.
Collapse
|