1
|
Mélida H, Kappel L, Ullah SF, Bulone V, Srivastava V. Quantitative proteomic analysis of plasma membranes from the fish pathogen Saprolegnia parasitica reveals promising targets for disease control. Microbiol Spectr 2024; 12:e0034824. [PMID: 38888349 PMCID: PMC11302233 DOI: 10.1128/spectrum.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and β-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in β-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.
Collapse
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
2
|
Kordyum EL, Artemenko OA, Hasenstein KH. Lipid Rafts and Plant Gravisensitivity. Life (Basel) 2022; 12:1809. [PMID: 36362962 PMCID: PMC9695138 DOI: 10.3390/life12111809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/24/2023] Open
Abstract
The necessity to include plants as a component of a Bioregenerative Life Support System leads to investigations to optimize plant growth facilities as well as a better understanding of the plant cell membrane and its numerous activities in the signaling, transport, and sensing of gravity, drought, and other stressors. The cell membrane participates in numerous processes, including endo- and exocytosis and cell division, and is involved in the response to external stimuli. Variable but stabilized microdomains form in membranes that include specific lipids and proteins that became known as (detergent-resistant) membrane microdomains, or lipid rafts with various subclassifications. The composition, especially the sterol-dependent recruitment of specific proteins affects endo- and exo-membrane domains as well as plasmodesmata. The enhanced saturated fatty acid content in lipid rafts after clinorotation suggests increased rigidity and reduced membrane permeability as a primary response to abiotic and mechanical stress. These results can also be obtained with lipid-sensitive stains. The linkage of the CM to the cytoskeleton via rafts is part of the complex interactions between lipid microdomains, mechanosensitive ion channels, and the organization of the cytoskeleton. These intricately linked structures and functions provide multiple future research directions to elucidate the role of lipid rafts in physiological processes.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Olga A. Artemenko
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Karl H. Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| |
Collapse
|
3
|
Watanabe E, Kondo M, Kamal MM, Uemura M, Takahashi D, Kawamura Y. Plasma membrane proteomic changes of Arabidopsis DRP1E during cold acclimation in association with the enhancement of freezing tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13820. [PMID: 36335535 DOI: 10.1111/ppl.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The freezing tolerance of plants that live in cold regions increases after exposure to low temperature, a process termed cold acclimation (CA). During CA, restructuring of the plasma membrane (PM) is important to enhance freezing tolerance. We have previously shown that the function of DYNAMIN-RELATED PROTEIN 1 E (DRP1E), which regulates endocytosis by pinching vesicles from the PM, is associated with the enhancement of freezing tolerance during CA in Arabidopsis. DRP1E is predicted to play a role in reconstituting the PM composition during CA. In this study, to test the validity of this hypothesis, we studied the changes in PM proteome patterns induced by drp1e mutation. In a detailed physiological analysis, after 3 days of CA, only young leaves showed significantly less increase in freezing tolerance in the mutant than in the wild type (WT). Using nano-liquid chromatography-tandem mass spectrometry, 496 PM proteins were identified. Among these proteins, 81 or 71 proteins were specifically altered in the WT or the mutant, respectively, in response to CA. Principal component analysis showed that the proteomic pattern differed between the WT and the mutant upon cold acclimation (CA), suggesting that DRP1E contributes to reconstruction of the PM during CA. Cluster analysis revealed that proteins that were significantly increased in the mutant after CA were biased toward glycosylphosphatidylinositol-anchored proteins, such as fasciclin-like arabinogalactan proteins. Thus, a primary target of DRP1E-associated PM reconstruction during CA is considered to be glycosylphosphatidylinositol-anchored proteins, which may be removed from the PM by DRP1E in young leaves after 3 days of CA.
Collapse
Affiliation(s)
| | - Mariko Kondo
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Matsuo Uemura
- Faculty of Agriculture, Iwate University, Morioka, Japan
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Daisuke Takahashi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yukio Kawamura
- Faculty of Agriculture, Iwate University, Morioka, Japan
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| |
Collapse
|
4
|
Shan L, Jones B. Nano liquid chromatography, an updated review. Biomed Chromatogr 2022; 36:e5317. [PMID: 34981550 DOI: 10.1002/bmc.5317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Low flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for mass spectrometry have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow liquid chromatography , the types of columns employed, and strategies for multi-dimensionality of separations, which is key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend towards biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy to use platform.
Collapse
|
5
|
Juurakko CL, Bredow M, Nakayama T, Imai H, Kawamura Y, diCenzo GC, Uemura M, Walker VK. The Brachypodium distachyon cold-acclimated plasma membrane proteome is primed for stress resistance. G3-GENES GENOMES GENETICS 2021; 11:6321953. [PMID: 34544140 PMCID: PMC8661430 DOI: 10.1093/g3journal/jkab198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
In order to survive subzero temperatures, some plants undergo cold acclimation (CA) where low, nonfreezing temperatures, and/or shortened day lengths allow cold-hardening and survival during subsequent freeze events. Central to this response is the plasma membrane (PM), where low temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first PM proteome of cold-acclimated Brachypodium distachyon, a model species for the study of monocot crops. A time-course experiment investigated CA-induced changes in the proteome following two-phase partitioning PM enrichment and label-free quantification by nano-liquid chromatography-mass spectrophotometry. Two days of CA were sufficient for membrane protection as well as an initial increase in sugar levels and coincided with a significant change in the abundance of 154 proteins. Prolonged CA resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained CA response elicited over several days. A meta-analysis revealed that the identified PM proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress, and salt resistance suggesting crosstalk between stress responses, such that CA may prime plants for other abiotic and biotic stresses. The PM proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.
Collapse
Affiliation(s)
- Collin L Juurakko
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Melissa Bredow
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Takato Nakayama
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yukio Kawamura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Matsuo Uemura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, School of Environmental Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Yasuoka Y, Fukuyama T, Izumi Y, Yamashita T, Nakayama Y, Inoue H, Yanagita K, Oshima T, Yamazaki T, Uematsu T, Kobayashi N, Shimada Y, Nagaba Y, Mukoyama M, Sato Y, Sands JM, Kawahara K, Nonoguchi H. Differentiation of endogenous erythropoietin and exogenous ESAs by Western blotting. Heliyon 2020; 6:e05389. [PMID: 33195841 PMCID: PMC7644904 DOI: 10.1016/j.heliyon.2020.e05389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/04/2022] Open
Abstract
Doping tests for the illegal use of erythropoiesis-stimulating agents (ESAs) have been developed. We developed a new Western blotting method to detect and distinguish endogenous erythropoietin (Epo, 35-38 kDa) and exogenous ESAs (epoetin α and β, 38-42 kDa; darbepoetin α, 47-50 kDa; epoetin β pegol, 93-110 kDa). Epo and ESAs are glycoproteins and deglycosylation using peptide-N-glycosidase F shifted all Epo and ESA bands except epoetin β pegol to 22 kDa. We cut the bands of Epo and ESAs from SDS-PAGE gels and analyzed them by Liquid Chromatography/Mass Spectrometry (LC/MS). LC/MS detected all endogenous Epo and exogenous ESAs as deglycosylated 22 kDa Epo, indicating that LC/MS analysis could confirm the presence of Epo or ESA, but could not distinguish between endogenous Epo and exogenous ESAs. We propose the following Epo doping tests: 1) detect Epo or ESAs by Western blotting of the glycosylated form; 2) increase the reliability by the band shift following deglycosylation; and 3) complete confirmation of Epo or ESA by LC/MS analysis using cut gels. One of the advantages of our method is that pre-purification of samples for Epo is not required in our Western blotting.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Kengo Yanagita
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Taiga Yamazaki
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Takayuki Uematsu
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yoshitaka Shimada
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yasushi Nagaba
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB room 3313, Atlanta, GA 30322, USA
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| |
Collapse
|
7
|
Detergent Resistant Membrane Domains in Broccoli Plasma Membrane Associated to the Response to Salinity Stress. Int J Mol Sci 2020; 21:ijms21207694. [PMID: 33080920 PMCID: PMC7588934 DOI: 10.3390/ijms21207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Detergent-resistant membranes (DRMs) microdomains, or “raft lipids”, are key components of the plasma membrane (PM), being involved in membrane trafficking, signal transduction, cell wall metabolism or endocytosis. Proteins imbibed in these domains play important roles in these cellular functions, but there are few studies concerning DRMs under abiotic stress. In this work, we determine DRMs from the PM of broccoli roots, the lipid and protein content, the vesicles structure, their water osmotic permeability and a proteomic characterization focused mainly in aquaporin isoforms under salinity (80 mM NaCl). Based on biochemical lipid composition, higher fatty acid saturation and enriched sterol content under stress resulted in membranes, which decreased osmotic water permeability with regard to other PM vesicles, but this permeability was maintained under control and saline conditions; this maintenance may be related to a lower amount of total PIP1 and PIP2. Selective aquaporin isoforms related to the stress response such as PIP1;2 and PIP2;7 were found in DRMs and this protein partitioning may act as a mechanism to regulate aquaporins involved in the response to salt stress. Other proteins related to protein synthesis, metabolism and energy were identified in DRMs independently of the treatment, indicating their preference to organize in DMRs.
Collapse
|
8
|
Abstract
Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze-thaw cycle. Changes in plasma membrane protein composition have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran-polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.
Collapse
|
9
|
Yasuoka Y, Fukuyama T, Izumi Y, Nakayama Y, Inoue H, Yanagita K, Oshima T, Yamazaki T, Uematsu T, Kobayashi N, Shimada Y, Nagaba Y, Mukoyama M, Yamashita T, Sato Y, Sands JM, Kawahara K, Nonoguchi H. Erythropoietin production by the kidney and the liver in response to severe hypoxia evaluated by Western blotting with deglycosylation. Physiol Rep 2020; 8:e14485. [PMID: 32592328 PMCID: PMC7319944 DOI: 10.14814/phy2.14485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
The detection of erythropoietin (Epo) protein by Western blotting has required pre‐purification of the sample. We developed a new Western blot method to detect plasma and urinary Epo using deglycosylation. Epo in urine and tissue, and erythropoiesis‐stimulating agents (ESAs) in urine were directly detected by our Western blotting. Plasma Epo and ESAs were not detected by direct application but were detected by our Western blotting after deglycosylation. The broad bands of Epo and ESAs were shifted to 22 kDa by deglycosylation except for PEG‐bound epoetin β pegol. The 22 kDa band from an anemic patient's urine was confirmed by Liquid Chromatography/Mass Spectrometry (LC/MS) to contain human Epo. Severe hypoxia (7% O2, 4 hr) caused a 400‐fold increase in deglycosylated Epo expression in rat kidneys, which is consistent with the increases in both Epo gene expression and plasma Epo concentration. Immunohistochemistry showed Epo expression in nephrons but not in interstitial cells under control conditions, and hypoxia increased Epo expression in interstitial cells but not in tubules. These data show that intrinsic Epo and all ESAs can be detected by Western blot either directly in urine or after deglycosylation in blood, and that the kidney but not the liver is the main site of Epo production in control and severe hypoxia. Our method will make the tests for Epo doping and detection easy.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Kengo Yanagita
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Taiga Yamazaki
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Takayuki Uematsu
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Yoshitaka Shimada
- Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Japan
| | - Yasushi Nagaba
- Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Japan
| |
Collapse
|
10
|
Willforss J, Leonova S, Tillander J, Andreasson E, Marttila S, Olsson O, Chawade A, Levander F. Interactive proteogenomic exploration of response to Fusarium head blight in oat varieties with different resistance. J Proteomics 2020; 218:103688. [PMID: 32061841 DOI: 10.1016/j.jprot.2020.103688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022]
Abstract
Fusarium species are cereal pathogens that cause the Fusarium Head Blight (FHB) disease. FHB can reduce yield, cause mycotoxin accumulation in the grain and reduce germination efficiency of the harvested seeds. Understanding the biochemical interactions between the host plants and the pathogen is crucial for controlling the disease and for the development of cultivars with improved tolerance to FHB. Here, we studied morphological and proteomic differences between the susceptible oat variety Belinda and the more resistant variety Argamak using variety-specific transcriptome assemblies as references. Measurements of deoxynivalenol toxin levels confirmed the partial resistance in Argamak and the susceptibility in Belinda. To jointly investigate the proteomics- and sequence data, we developed an RShiny-based interface for interactive exploration of the dataset using univariate and multivariate statistics. When applying this interface to the dataset, quantitative protein differences between Belinda and Argamak were detected, and eighteen peptides were found uniquely in Argamak during infection, among them several lipoxygenases. Such proteins can be developed as markers for Fusarium resistance breeding. In conclusion, this study provides the first proteogenomic insight on molecular Fusarium-oat interactions at both morphological and molecular levels and the data are openly available through an interactive interface for further inspection. SIGNIFICANCE: Fusarium head blight causes widespread damage to crops, and chronic and acute toxicity to human and livestock due to the accumulation of toxins during infection. In the present study, two oat varieties with differing resistance were challenged with Fusarium to understand the disease better, and studied both at morphological and molecular levels, identifying proteins which could play a role in the defense mechanism. Furthermore, a proteogenomics approach allows joint profiling of expression and sequence level differences to identify potentially functionally differing mutations. Here such analysis is made openly available through an interactive interface which allows other scientists to draw further findings from the data. This study may both serve as a basis for understanding oat disease response and developing breeding markers for Fusarium resistant oat and future proteogenomic studies using the interactive approach described.
Collapse
Affiliation(s)
- J Willforss
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - S Leonova
- CropTailor AB, c/o Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - J Tillander
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - E Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - S Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - O Olsson
- CropTailor AB, c/o Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - A Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - F Levander
- Department of Immunotechnology, Lund University, Lund, Sweden; National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Sweden.
| |
Collapse
|
11
|
Toropov AA, Toropova AP, Marzo M, Carnesecchi E, Selvestrel G, Benfenati E. Pesticides, cosmetics, drugs: identical and opposite influences of various molecular features as measures of endpoints similarity and dissimilarity. Mol Divers 2020; 25:1137-1144. [PMID: 32323128 DOI: 10.1007/s11030-020-10085-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/26/2022]
Abstract
The similarity is an important category in natural sciences. A measure of similarity for a group of various biochemical endpoints is suggested. The list of examined endpoints contains (1) toxicity of pesticides towards rainbow trout; (2) human skin sensitization; (3) mutagenicity; (4) toxicity of psychotropic drugs; and (5) anti HIV activity. Further applying and evolution of the suggested approach is discussed. In particular, the conception of the similarity (dissimilarity) of endpoints can play the role of a "useful bridge" between quantitative structure property/activity relationships (QSPRs/QSARs) and read-across technique.
Collapse
Affiliation(s)
- Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Marco Marzo
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Edoardo Carnesecchi
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80177, 3508 TD, Utrecht, The Netherlands
| | - Gianluca Selvestrel
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
12
|
Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M. Shotgun Proteomics of Plant Plasma Membrane and Microdomain Proteins Using Nano-LC-MS/MS. Methods Mol Biol 2020; 2139:89-106. [PMID: 32462580 DOI: 10.1007/978-1-0716-0528-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Shotgun proteomics allows for the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. However, this method is not fully applicable for highly hydrophobic proteins with multiple transmembrane domains. In order to solve this problem, we here describe a shotgun proteomics method using nano-LC-MS/MS for proteins in the plasma membrane and plasma membrane microdomain fractions. The results obtained are easily applicable to label-free protein semiquantification.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Central Infrastructure Group: Genomics and Transcript Profiling, Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Bin Li
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Takato Nakayama
- Department of Plant-bioscience, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant-bioscience, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan.
- Department of Plant-bioscience, Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
13
|
Plasma membrane proteome analyses of Arabidopsis thaliana suspension-cultured cells during cold or ABA treatment: Relationship with freezing tolerance and growth phase. J Proteomics 2020; 211:103528. [DOI: 10.1016/j.jprot.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
|
14
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
15
|
Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:649-669. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
Collapse
Affiliation(s)
- Trevor H Yeats
- School of Integrated Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
16
|
Ibort P, Imai H, Uemura M, Aroca R. Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:43-59. [PMID: 29145071 DOI: 10.1016/j.jplph.2017.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Feeding an increasing global population as well as reducing environmental impact of crops is the challenge for the sustainable intensification of agriculture. Plant-growth-promoting bacteria (PGPB) management could represent a suitable method but elucidation of their action mechanisms is essential for a proper and effective utilization. Furthermore, ethylene is involved in growth and response to environmental stimuli but little is known about the implication of ethylene perception in PGPB activity. The ethylene-insensitive tomato never ripe and its isogenic wild-type cv. Pearson lines inoculated with Bacillus megaterium or Enterobacter sp. C7 strains were grown until mature stage to analyze growth promotion, and bacterial inoculation effects on root proteomic profiles. Enterobacter C7 promoted growth in both plant genotypes, meanwhile Bacillus megaterium PGPB activity was only noticed in wt plants. Moreover, PGPB inoculation affected proteomic profile in a strain- and genotype-dependent manner modifying levels of stress-related and interaction proteins, and showing bacterial inoculation effects on antioxidant content and phosphorus acquisition capacity. Ethylene perception is essential for properly recognition of Bacillus megaterium and growth promotion mediated in part by increased levels of reduced glutathione. In contrast, Enterobacter C7 inoculation improves phosphorus nutrition keeping plants on growth independently of ethylene sensitivity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Hiroyuki Imai
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
17
|
Takahashi D, Uemura M, Kawamura Y. Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:61-79. [PMID: 30288704 DOI: 10.1007/978-981-13-1244-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Freezing stress is accompanied by a state change from water to ice and has multiple facets causing dehydration; consequently, hyperosmotic and mechanical stresses coupled with unfavorable chilling stress act in a parallel way. Freezing tolerance varies widely among plant species, and, for example, most temperate plants can overcome deleterious effects caused by freezing temperatures in winter. Destabilization and dysfunction of the plasma membrane are tightly linked to freezing injury of plant cells. Plant freezing tolerance increases upon exposure to nonfreezing low temperatures (cold acclimation). Recent studies have unveiled pleiotropic responses of plasma membrane lipids and proteins to cold acclimation. In addition, advanced techniques have given new insights into plasma membrane structural non-homogeneity, namely, microdomains. This chapter describes physiological implications of plasma membrane responses enhancing freezing tolerance during cold acclimation, with a focus on microdomains.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Department of Plant-biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center and Department of Plant-biosciences, and United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
18
|
Qiao Z, Brechenmacher L, Smith B, Strout GW, Mangin W, Taylor C, Russell SD, Stacey G, Libault M. The GmFWL1 (FW2-2-like) nodulation gene encodes a plasma membrane microdomain-associated protein. PLANT, CELL & ENVIRONMENT 2017; 40:1442-1455. [PMID: 28241097 DOI: 10.1111/pce.12941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 05/14/2023]
Abstract
The soybean gene GmFWL1 (FW2-2-like1) belongs to a plant-specific family that includes the tomato FW2-2 and the maize CNR1 genes, two regulators of plant development. In soybean, GmFWL1 is specifically expressed in root hair cells in response to rhizobia and in nodules. Silencing of GmFWL1 expression significantly reduced nodule numbers supporting its role during soybean nodulation. While the biological role of GmFWL1 has been described, its molecular function and, more generally, the molecular function of plant FW2-2-like proteins is unknown. In this study, we characterized the role of GmFWL1 as a membrane microdomain-associated protein. Specifically, using biochemical, molecular and cellular methods, our data show that GmFWL1 interacts with various proteins associated with membrane microdomains such as remorin, prohibitins and flotillins. Additionally, comparative genomics revealed that GmFWL1 interacts with GmFLOT2/4 (FLOTILLIN2/4), the soybean ortholog to Medicago truncatula FLOTILLIN4, a major regulator of the M. truncatula nodulation process. We also observed that, similarly to MtFLOT4 and GmFLOT2/4, GmFWL1 was localized at the tip of the soybean root hair cells in response to rhizobial inoculation supporting the early function of GmFWL1 in the rhizobium infection process.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laurent Brechenmacher
- Division of Biochemistry and Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Benjamin Smith
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, 73019, USA
| | - Gregory W Strout
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, 73019, USA
| | - William Mangin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Christopher Taylor
- Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, 44691, USA
| | - Scott D Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, 73019, USA
| | - Gary Stacey
- Division of Biochemistry and Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
19
|
Minami A, Takahashi D, Kawamura Y, Uemura M. Isolation of Plasma Membrane and Plasma Membrane Microdomains. Methods Mol Biol 2017; 1511:199-212. [PMID: 27730613 DOI: 10.1007/978-1-4939-6533-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The plasma membrane surrounds the cytoplasm of a cell and functions as a barrier to separate the intracellular compartment from the extracellular environment. Protein and lipid components distribute nonuniformly and the components form clusters with various functions in the plasma membrane. These clusters are called as "microdomains." In plant cells, microdomains have been studied extensively because they play important roles in biotic/abiotic stress responses, cellular trafficking, and cell wall metabolism. Here we describe a standard protocol for the isolation of the plasma membrane and microdomains from plant cells, Arabidopsis and oat.
Collapse
Affiliation(s)
- Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| |
Collapse
|
20
|
Takahashi D, Kawamura Y, Uemura M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5203-15. [PMID: 27471282 PMCID: PMC5014161 DOI: 10.1093/jxb/erw279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cold acclimation results in changes of the plasma membrane (PM) composition. The PM is considered to contain specific lipid/protein-enriched microdomains which can be extracted as detergent-resistant plasma membrane (DRM). Previous studies in animal cells have demonstrated that glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be targeted to microdomains and/or the apoplast. However, the functional significance of GPI-APs during cold acclimation in plants is not yet fully understood. In this study, we aimed to investigate the responsiveness of GPI-APs to cold acclimation treatment in Arabidopsis We isolated the PM, DRM, and apoplast fractions separately and, in addition, GPI-AP-enriched fractions were prepared from the PM preparation. Label-free quantitative shotgun proteomics identified a number of GPI-APs (163 proteins). Among them, some GPI-APs such as fasciclin-like arabinogalactan proteins and glycerophosphoryldiester phosphodiesterase-like proteins predominantly increased in PM- and GPI-AP-enriched fractions while the changes of GPI-APs in the DRM and apoplast fractions during cold acclimation were considerably different from those of other fractions. These proteins are thought to be associated with cell wall structure and properties. Therefore, this study demonstrated that each GPI-AP responded to cold acclimation in a different manner, suggesting that these changes during cold acclimation are involved in rearrangement of the extracellular matrix including the cell wall towards acquisition of freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Max-Planck-Institut für Molekulare Pflanzenphysiologie, D -14476 Potsdam, Germany
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
21
|
Gutierrez-Carbonell E, Takahashi D, Lüthje S, González-Reyes JA, Mongrand S, Contreras-Moreira B, Abadía A, Uemura M, Abadía J, López-Millán AF. A Shotgun Proteomic Approach Reveals That Fe Deficiency Causes Marked Changes in the Protein Profiles of Plasma Membrane and Detergent-Resistant Microdomain Preparations from Beta vulgaris Roots. J Proteome Res 2016; 15:2510-24. [PMID: 27321140 DOI: 10.1021/acs.jproteome.6b00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.
Collapse
Affiliation(s)
| | | | - Sabine Lüthje
- University of Hamburg , Biocenter Klein Flottbek, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba , Campus de Rabanales, Edificio Severo Ochoa, Córdoba 14014, Spain
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS-Université Bordeaux Segalen, Bâtiment A3, INRA Bordeaux Aquitaine , 71 Rue Edouard Borlaux, CS 20032, F-33140 Villenave d'Ornon, France
| | | | | | | | | | - Ana Flor López-Millán
- USDA-ARS Chindren's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine , 1100 Bates Street, Houston, Texas 77030, United States
| |
Collapse
|
22
|
Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 2016; 72:123-34. [PMID: 26904981 DOI: 10.1016/j.cryobiol.2016.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/04/2016] [Accepted: 02/17/2016] [Indexed: 01/24/2023]
Abstract
Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance.
Collapse
|
23
|
Minami A, Tominaga Y, Furuto A, Kondo M, Kawamura Y, Uemura M. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:501-14. [PMID: 26095877 DOI: 10.1111/tpj.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 05/24/2023]
Abstract
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.
Collapse
Affiliation(s)
- Anzu Minami
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yoko Tominaga
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Akari Furuto
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Mariko Kondo
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
24
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Guillier C, Cacas JL, Recorbet G, Deprêtre N, Mounier A, Mongrand S, Simon-Plas F, Wipf D, Dumas-Gaudot E. Direct purification of detergent-insoluble membranes from Medicago truncatula root microsomes: comparison between floatation and sedimentation. BMC PLANT BIOLOGY 2014; 14:255. [PMID: 25267185 PMCID: PMC4193990 DOI: 10.1186/s12870-014-0255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/20/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.
Collapse
Affiliation(s)
- Christelle Guillier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Jean-Luc Cacas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Ghislaine Recorbet
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Nicolas Deprêtre
- />UMR CSGA: Centre des Sciences du Goût et de l’alimentation, UMR 6265 CNRS, 1324 INRA-uB, Dijon, France
| | - Arnaud Mounier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Sébastien Mongrand
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Françoise Simon-Plas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Daniel Wipf
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
26
|
Abstract
Class III peroxidases are heme-containing proteins of the secretory pathway with an extremely high number of isoenzymes, indicating the tremendous and important functions of this protein family. This chapter describes fractionation of the cell in subproteomes, their separation by polyacrylamide gel electrophoresis (PAGE) and visualization of peroxidase isoenzymes by heme and specific in-gel staining procedures. Soluble and membrane-bound peroxidases were separated by differential centrifugation. Aqueous polymer two-phase partitioning and discontinuous sucrose density gradient were applied to resolve peroxidase profiles of plasma membranes and tonoplast. Peroxidase isoenzymes of subproteomes were further separated by PAGE techniques such as native isoelectric focussing (IEF), high resolution clear native electrophoresis (hrCNE), and modified sodium dodecyl sulfate (modSDS)-PAGE. These techniques were used as stand-alone method or in combination for two-dimensional PAGE.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocentre Klein Flottbek, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. Methods Mol Biol 2014; 1072:481-98. [PMID: 24136542 DOI: 10.1007/978-1-62703-631-3_33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.
Collapse
|
28
|
Takahashi D, Kawamura Y, Uemura M. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. J Proteome Res 2013; 12:4998-5011. [PMID: 24111712 DOI: 10.1021/pr400750g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold acclimation (CA) results in an increase in freezing tolerance of plants, which is closely associated to functional changes of the plasma membrane (PM). Although proteomic studies have revealed compositional changes of the PM during CA, there has been no large-scale study of how the microdomains in the PM, which contains specific lipids and proteins, change during CA. Therefore, we conducted semiquantitative shotgun proteomics using microdomain-enriched detergent-resistant membrane (DRM) fractions extracted from low freezing-tolerant oat and highly freezing-tolerant rye. We identified 740 and 809 DRM proteins in oat and rye, respectively. Among the proteins identified, the abundances of a variety of proteins, such as P-type ATPase and aquaporins, were affected by CA in both oat and rye. Some CA-responsive proteins in the DRM fractions, such as heat shock protein 70, changed differently in oat and rye. In addition, changes in lipocalins and sugar transporters in the DRM fractions were different from those found in total PM fraction during CA. This is the first report to describe compositional changes in the DRM during CA. The proteomic profiles obtained in the present study hint at many possible microdomain functions associated with CA and freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences and ‡Cryobiofrontier Research Center, Iwate University , 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | |
Collapse
|
29
|
Srivastava V, Malm E, Sundqvist G, Bulone V. Quantitative proteomics reveals that plasma membrane microdomains from poplar cell suspension cultures are enriched in markers of signal transduction, molecular transport, and callose biosynthesis. Mol Cell Proteomics 2013; 12:3874-85. [PMID: 24051156 DOI: 10.1074/mcp.m113.029033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1 → 3)-β-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
31
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|