1
|
Guillotin S, Delcourt N. Studying the Impact of Persistent Organic Pollutants Exposure on Human Health by Proteomic Analysis: A Systematic Review. Int J Mol Sci 2022; 23:ijms232214271. [PMID: 36430748 PMCID: PMC9692675 DOI: 10.3390/ijms232214271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Persistent organic pollutants (POPs) are organic chemical substances that are widely distributed in environments around the globe. POPs accumulate in living organisms and are found at high concentrations in the food chain. Humans are thus continuously exposed to these chemical substances, in which they exert hepatic, reproductive, developmental, behavioral, neurologic, endocrine, cardiovascular, and immunologic adverse health effects. However, considerable information is unknown regarding the mechanism by which POPs exert their adverse effects in humans, as well as the molecular and cellular responses involved. Data are notably lacking concerning the consequences of acute and chronic POP exposure on changes in gene expression, protein profile, and metabolic pathways. We conducted a systematic review to provide a synthesis of knowledge of POPs arising from proteomics-based research. The data source used for this review was PubMed. This study was carried out following the PRISMA guidelines. Of the 742 items originally identified, 89 were considered in the review. This review presents a comprehensive overview of the most recent research and available solutions to explore proteomics datasets to identify new features relevant to human health. Future perspectives in proteomics studies are discussed.
Collapse
Affiliation(s)
- Sophie Guillotin
- Poison Control Centre, Toulouse University Hospital, 31059 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations, 31000 Toulouse, France
| | - Nicolas Delcourt
- Poison Control Centre, Toulouse University Hospital, 31059 Toulouse, France
- INSERM UMR 1214, Toulouse NeuroImaging Center, 31024 Toulouse, France
- Correspondence: ; Tel.: +33-(0)-567691640
| |
Collapse
|
2
|
Smith LC, Lavelle CM, Silva-Sanchez C, Denslow ND, Sabo-Attwood T. Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 2018; 8:10212. [PMID: 29977039 PMCID: PMC6033950 DOI: 10.1038/s41598-018-28395-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Adverse outcome pathways (AOPs) are conceptual frameworks that organize and link contaminant-induced mechanistic molecular changes to adverse biological responses at the individual and population level. AOPs leverage molecular and high content mechanistic information for regulatory decision-making, but most current AOPs for hormonally active agents (HAAs) focus on nuclear receptor-mediated effects only despite the overwhelming evidence that HAAs also activate membrane receptors. Activation of membrane receptors triggers non-genomic signaling cascades often transduced by protein phosphorylation leading to phenotypic changes. We utilized label-free LC-MS/MS to identify proteins differentially phosphorylated in the brain of fathead minnows (Pimephales promelas) aqueously exposed for 30 minutes to two HAAs, 17α-ethinylestradiol (EE2), a strong estrogenic substance, and levonorgestrel (LNG), a progestin, both components of the birth control pill. EE2 promoted differential phosphorylation of proteins involved in neuronal processes such as nervous system development, synaptic transmission, and neuroprotection, while LNG induced differential phosphorylation of proteins involved in axon cargo transport and calcium ion homeostasis. EE2 and LNG caused similar enrichment of synaptic plasticity and neurogenesis. This study is the first to identify molecular changes in vivo in fish after short-term exposure and highlights transduction of rapid signaling mechanisms as targets of HAAs, in addition to nuclear receptor-mediated pathways.
Collapse
Affiliation(s)
- L C Smith
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C M Lavelle
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C Silva-Sanchez
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32601, USA
| | - N D Denslow
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| | - T Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Wan C, Zhang Y, Jiang J, Jiang S, Nie X, Li A, Guo A, Wu Q. Critical Role of TAK1-Dependent Nuclear Factor-κB Signaling in 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced Astrocyte Activation and Subsequent Neuronal Death. Neurochem Res 2015; 40:1220-31. [PMID: 25998883 DOI: 10.1007/s11064-015-1585-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 02/02/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been recently shown to elicit inflammatory response in a number of cell-types. However, whether TCDD could provoke inflammation in astrocytes, the most abundant glial cells in central nervous system (CNS), remains virtually unknown. In the present study, we showed that TCDD exposure could induce evident astrocyte activation both in vivo and in vitro. Further, we found that TGF-β-activated kinase 1 (TAK1), a critical regulator of NF-κB signaling, was rapidly phosphorylated in the process of TCDD-induced reactive astroglia. Exposure to TCDD led to rapid TAK1 and NF-κB p65 phosphorylation, as well as IKBα degradation. Moreover, blockage of TAK1 using siRNA oligos or TAK1 inhibitor 5Z-7-oxozeaenol significantly attenuated TCDD-induced astrocyte activation as well as the release of TNF-α. Finally, we showed that the conditioned medium of TCDD-treated astrocytes promoted the apoptosis of PC12 neuronal cells, which could be blocked with the pre-treatment of TAK1 inhibitor. Taken together, these findings suggested that TCDD could promote the inflammatory activation of astrocytes through modulating TAK1-NF-κB cascade, implicating that reactive astrocytes might contribute to TCDD-induced adverse effects on CNS system.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygieney, School of Public Health, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Astrocyte-elevated gene-1 (AEG-1/MTDH/LYRIC) is a potent oncogene that regulates key cellular processes underlying disease of the central nervous system (CNS). From its involvement in human immunodeficiency virus (HIV)-1 infection to its role in neurodegenerative disease and malignant brain tumors, AEG-1/MTDH/LYRIC facilitates cellular survival and proliferation through the control of a multitude of molecular signaling cascades. AEG-1/MTDH/LYRIC induction by HIV-1 and TNF highlights its importance in viral infection, and its incorporation into viral vesicles supports its potential role in active viral replication. Overexpression of AEG-1/MTDH/LYRIC in the brains of Huntington's disease patients suggests its function in neurodegenerative disease, and its association with genetic polymorphisms in large genome-wide association studies of migraine patients suggests a possible role in the pathogenesis of migraine headaches. In the field of cancer, AEG-1/MTDH/LYRIC promotes angiogenesis, migration, invasion, and enhanced tumor metabolism through key oncogenic signaling cascades. In response to external stress cues and cellular mechanisms to inhibit further growth, AEG-1/MTDH/LYRIC activates pathways that bypass cell checkpoints and potentiates signals to enhance survival and tumorigenesis. As an oncogene that promotes aberrant cellular processes within the CNS, AEG-1/MTDH/LYRIC represents an important therapeutic target for the treatment of neurological disease.
Collapse
Affiliation(s)
- Evan K Noch
- Department of Neurology and Neuroscience, Weill-Cornell Medical Center-New York Presbyterian Hospital, New York, NY, USA.
| | | |
Collapse
|
5
|
Brandner S, Eberhagen C, Lichtmannegger J, Hieber L, Andrae U. TCDD induces the expression of insulin-like growth factor binding protein 4 in 5L rat hepatoma cells: A cautionary tale of the use of this cell line in studies on dioxin toxicity. Toxicology 2013; 309:107-16. [DOI: 10.1016/j.tox.2013.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
|