1
|
Itze-Mayrhofer C, Brem G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J Proteomics 2020; 225:103884. [PMID: 32593762 DOI: 10.1016/j.jprot.2020.103884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Reproductive fluids from the female reproductive tract are gaining attention for their potential to support and optimize reproductive processes, including gamete maturation and embryo culture in vitro. Quantitative proteomics is a powerful way to decipher the proteome of reproductive tract fluids and to identify biologically relevant proteins. The present review describes proteomic strategies for analysing female reproductive fluid proteins. In addition, it considers the strategies for the preparation of oviductal, uterine and follicular fluid samples. Finally, it highlights the main results of quantitative proteomic studies, providing insights into the biological processes related to reproductive biology in farm animals. SIGNIFICANCE: Assisted reproductive technologies (ARTs) have become vitally important for farm animal breeding and much effort is going into the optimization and refinement of the techniques. There are also attempts to imitate physiological conditions by adding reproductive fluids or individual fluid proteins to improve in vitro procedures. A detailed knowledge of the reproductive fluid proteomes is indispensable. The present review summarizes the most widely used quantitative proteomic approaches for the analysis of fluids from the female reproductive tract and highlights the potential of quantitative proteomics to delineate reproductive processes and identify candidate proteins for ARTs in farm animals.
Collapse
Affiliation(s)
- Corina Itze-Mayrhofer
- Institute of Animal Breeding and Genetics, Group Molecular Reproduction IFA-Tulln, University of Veterinary Medicine, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
2
|
Okada T, Ohama T, Takafuji K, Kanno K, Matsuda H, Sairyo M, Zhu Y, Saga A, Kobayashi T, Masuda D, Koseki M, Nishida M, Sakata Y, Yamashita S. Shotgun proteomic analysis reveals proteome alterations in HDL of patients with cholesteryl ester transfer protein deficiency. J Clin Lipidol 2019; 13:317-325. [PMID: 30745272 DOI: 10.1016/j.jacl.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously reported that the patients with cholesteryl ester transfer protein (CETP) deficiency (CETP-D) show marked changes in the size and lipid compositions of high-density lipoprotein (HDL) and that they are not protected from atherosclerotic cardiovascular diseases, despite increased serum HDL-cholesterol (HDL-C) levels. HDL particles carry a variety of proteins, some of which are known to have antiatherogenic functions. OBJECTIVE This study aimed to investigate the protein composition of HDL particles in patients with CETP-D. METHODS Eight patients with complete deficiency of CETP and 8 normolipidemic healthy subjects were enrolled. We performed shotgun proteomic analysis to investigate the proteome of ultracentrifugally isolated HDL. RESULTS We identified 79 HDL-associated proteins involved in lipid metabolism, protease inhibition, complement regulation, and acute-phase response, including 5 potential newly identified HDL-associated proteins such as angiopoietin-like3 (ANGPTL3). Spectral counts of apolipoprotein (apo) E were increased in patients with CETP-D compared with controls (60.3 ± 6.9 vs 43.7 ± 2.5, P < .001), which is concordant with our previous report. Complement regulatory proteins such as C3, C4a, C4b, and C9 were also significantly enriched in HDL from patients with CETP-D. Furthermore, apoC-III and ANGPTL3, both of which are now known to associate with increased atherosclerotic cardiovascular diseases, were enriched in patients with CETP-D compared with normolipidemic subjects (35.9 ± 5.3 vs 27.1 ± 3.7, 2.3 ± 1.1 vs 0.4 ± 1.1, respectively; P < .01). CONCLUSION We have characterized HDL-associated proteins in patients with CETP-D. We identified a significant increase in the amount of apoE, apoC-III, ANGPTL3, and complement regulatory proteins. These proteomic changes might be partly responsible for the enhanced atherogenicity of patients with CETP-D.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuaki Takafuji
- Department of Bio-System Pharmacology, Osaka University Graduate School Graduate, School of Medicine, Osaka, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hibiki Matsuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Sairyo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayami Saga
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuya Kobayashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Cardiology, Rinku General Medical Center, Osaka, Japan.
| |
Collapse
|
3
|
Smith LC, Lavelle CM, Silva-Sanchez C, Denslow ND, Sabo-Attwood T. Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 2018; 8:10212. [PMID: 29977039 PMCID: PMC6033950 DOI: 10.1038/s41598-018-28395-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Adverse outcome pathways (AOPs) are conceptual frameworks that organize and link contaminant-induced mechanistic molecular changes to adverse biological responses at the individual and population level. AOPs leverage molecular and high content mechanistic information for regulatory decision-making, but most current AOPs for hormonally active agents (HAAs) focus on nuclear receptor-mediated effects only despite the overwhelming evidence that HAAs also activate membrane receptors. Activation of membrane receptors triggers non-genomic signaling cascades often transduced by protein phosphorylation leading to phenotypic changes. We utilized label-free LC-MS/MS to identify proteins differentially phosphorylated in the brain of fathead minnows (Pimephales promelas) aqueously exposed for 30 minutes to two HAAs, 17α-ethinylestradiol (EE2), a strong estrogenic substance, and levonorgestrel (LNG), a progestin, both components of the birth control pill. EE2 promoted differential phosphorylation of proteins involved in neuronal processes such as nervous system development, synaptic transmission, and neuroprotection, while LNG induced differential phosphorylation of proteins involved in axon cargo transport and calcium ion homeostasis. EE2 and LNG caused similar enrichment of synaptic plasticity and neurogenesis. This study is the first to identify molecular changes in vivo in fish after short-term exposure and highlights transduction of rapid signaling mechanisms as targets of HAAs, in addition to nuclear receptor-mediated pathways.
Collapse
Affiliation(s)
- L C Smith
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C M Lavelle
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C Silva-Sanchez
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32601, USA
| | - N D Denslow
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| | - T Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Romero JJ, Liebig BE, Broeckling CD, Prenni JE, Hansen TR. Pregnancy-induced changes in metabolome and proteome in ovine uterine flushings. Biol Reprod 2018; 97:273-287. [PMID: 29044433 DOI: 10.1093/biolre/iox078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/15/2017] [Indexed: 12/25/2022] Open
Abstract
Mass spectrometry (MS) approaches were used herein to identify metabolites and proteins in uterine flushings (UF) that may contribute to nourishing the conceptus. Ovine uteri collected on Day 12 of the estrous cycle (n = 5 ewes exposed to vasectomized ram) or Days 12 (n = 4), 14 (n = 5), or 16 (n = 5) of pregnancy (bred with fertile ram) were flushed using buffered saline. Metabolites were extracted using 80% methanol and profiled using ultraperformance liquid chromatography (LC) tandem mass spectrometry. The proteome was examined by digestion with trypsin, followed by the analysis of peptides with LC-MS/MS. Metabolite profiling detected 8510 molecular features of which 9 were detected only in UF from Day 14-16 pregnant ewes that function in fatty acid transport (carnitines), hormone synthesis (androstenedione like), and availability of nutrients (valine). Proteome analysis detected 783 proteins present by Days 14-16 of pregnancy in UF, 7 of which are as follows: annexin (ANX) A1, A2, and A5; calcium-binding protein (S100A11); profilin 1; trophoblast kunitz domain protein 1 (TKDP); and interferon tau (IFNT). These proteins function in endocytosis, exocytosis, calcium signaling, and inhibition of prostaglandins (annexins and S100A11); protecting against maternal proteases (TKDP); remodeling cytoskeleton (profilin 1); and altering uterine release of prostaglandin F2 alpha as well as inducing IFNT-stimulated genes in the endometrium and the corpus luteum (IFNT). Identifying metabolites and proteins produced by the uterus and conceptus advances our understanding of embryo/maternal signaling and provides insights into possible the causes of reproductive failure.
Collapse
Affiliation(s)
- Jared J Romero
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bethany E Liebig
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA.,Department of Horticulture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA.,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Doherty AH, Roteliuk DM, Gookin SE, McGrew AK, Broccardo CJ, Condon KW, Prenni JE, Wojda SJ, Florant GL, Donahue SW. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots. Physiol Biochem Zool 2016; 89:364-76. [DOI: 10.1086/687413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Mass Spectrometry-Based Metabolomic and Proteomic Strategies in Organic Acidemias. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9210408. [PMID: 27403441 PMCID: PMC4923558 DOI: 10.1155/2016/9210408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022]
Abstract
Organic acidemias (OAs) are inherited metabolic disorders caused by deficiency of enzymatic activities in the catabolism of amino acids, carbohydrates, or lipids. These disorders result in the accumulation of mono-, di-, or tricarboxylic acids, generally referred to as organic acids. The OA outcomes can involve different organs and/or systems. Some OA disorders are easily managed if promptly diagnosed and treated, whereas, in others cases, such as propionate metabolism-related OAs (propionic acidemia, PA; methylmalonic acidemia, MMA), neither diet, vitamin therapy, nor liver transplantation appears to prevent multiorgan impairment. Here, we review the recent developments in dissecting molecular bases of OAs by using integration of mass spectrometry- (MS-) based metabolomic and proteomic strategies. MS-based techniques have facilitated the rapid and economical evaluation of a broad spectrum of metabolites in various body fluids, also collected in small samples, like dried blood spots. This approach has enabled the timely diagnosis of OAs, thereby facilitating early therapeutic intervention. Besides providing an overview of MS-based approaches most frequently used to study the molecular mechanisms underlying OA pathophysiology, we discuss the principal challenges of metabolomic and proteomic applications to OAs.
Collapse
|
7
|
Bitsika V, Duveau V, Simon-Areces J, Mullen W, Roucard C, Makridakis M, Mermelekas G, Savvopoulos P, Depaulis A, Vlahou A. High-Throughput LC–MS/MS Proteomic Analysis of a Mouse Model of Mesiotemporal Lobe Epilepsy Predicts Microglial Activation Underlying Disease Development. J Proteome Res 2016; 15:1546-62. [DOI: 10.1021/acs.jproteome.6b00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vasiliki Bitsika
- Biotechnology
Division, Biomedical Research Foundation, Academy of Athens, Soranou
Efessiou 4, 11527 Athens, Greece
| | | | - Julia Simon-Areces
- Inserm,
U1216, Grenoble-Institut des Neurosciences, F-38000 Grenoble, France
| | - William Mullen
- BHF
Glasgow Cardiovascular Research Centre, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | | | - Manousos Makridakis
- Biotechnology
Division, Biomedical Research Foundation, Academy of Athens, Soranou
Efessiou 4, 11527 Athens, Greece
| | - George Mermelekas
- Biotechnology
Division, Biomedical Research Foundation, Academy of Athens, Soranou
Efessiou 4, 11527 Athens, Greece
| | - Pantelis Savvopoulos
- Biotechnology
Division, Biomedical Research Foundation, Academy of Athens, Soranou
Efessiou 4, 11527 Athens, Greece
| | - Antoine Depaulis
- Inserm,
U1216, Grenoble-Institut des Neurosciences, F-38000 Grenoble, France
| | - Antonia Vlahou
- Biotechnology
Division, Biomedical Research Foundation, Academy of Athens, Soranou
Efessiou 4, 11527 Athens, Greece
| |
Collapse
|
8
|
Blein-Nicolas M, Zivy M. Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:883-95. [PMID: 26947242 DOI: 10.1016/j.bbapap.2016.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 11/18/2022]
Abstract
How to process and analyze MS data to quantify and statistically compare protein abundances in bottom-up proteomics has been an open debate for nearly fifteen years. Two main approaches are generally used: the first is based on spectral data generated during the process of identification (e.g. peptide counting, spectral counting), while the second makes use of extracted ion currents to quantify chromatographic peaks and infer protein abundances based on peptide quantification. These two approaches actually refer to multiple methods which have been developed during the last decade, but were submitted to deep evaluations only recently. In this paper, we compiled these different methods as exhaustively as possible. We also summarized the way they address the different problems raised by bottom-up protein quantification such as normalization, the presence of shared peptides, unequal peptide measurability and missing data. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Mélisande Blein-Nicolas
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Michel Zivy
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Rahlouni F, Szarka S, Shulaev V, Prokai L. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos. Zebrafish 2015; 12:398-407. [PMID: 26439676 DOI: 10.1089/zeb.2015.1121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response.
Collapse
Affiliation(s)
- Fatima Rahlouni
- 1 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas
| | - Szabolcs Szarka
- 1 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas
| | - Vladimir Shulaev
- 2 Department of Biological Sciences, University of North Texas , Denton, Texas
| | - Laszlo Prokai
- 1 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
10
|
Robison FM, Heuberger AL, Brick MA, Prenni JE. Proteome Characterization of Leaves in Common Bean. Proteomes 2015; 3:236-248. [PMID: 28248269 PMCID: PMC5217379 DOI: 10.3390/proteomes3030236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023] Open
Abstract
Dry edible bean (Phaseolus vulgaris L.) is a globally relevant food crop. The bean genome was recently sequenced and annotated allowing for proteomics investigations aimed at characterization of leaf phenotypes important to agriculture. The objective of this study was to utilize a shotgun proteomics approach to characterize the leaf proteome and to identify protein abundance differences between two bean lines with known variation in their physiological resistance to biotic stresses. Overall, 640 proteins were confidently identified. Among these are proteins known to be involved in a variety of molecular functions including oxidoreductase activity, binding peroxidase activity, and hydrolase activity. Twenty nine proteins were found to significantly vary in abundance (p-value < 0.05) between the two bean lines, including proteins associated with biotic stress. To our knowledge, this work represents the first large scale shotgun proteomic analysis of beans and our results lay the groundwork for future studies designed to investigate the molecular mechanisms involved in pathogen resistance.
Collapse
Affiliation(s)
- Faith M Robison
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA.
- Department of Biochemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Large-scale analysis of posttranslational modifications in the hippocampus of patients with Alzheimer’s disease using pI shift and label-free quantification without enrichment. Anal Bioanal Chem 2014; 406:5433-46. [DOI: 10.1007/s00216-014-7933-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 01/10/2023]
|
12
|
Min H, Han D, Kim Y, Cho JY, Jin J, Kim Y. Label-free quantitative proteomics and N-terminal analysis of human metastatic lung cancer cells. Mol Cells 2014; 37:457-66. [PMID: 24805778 PMCID: PMC4086339 DOI: 10.14348/molcells.2014.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Proteomic analysis is helpful in identifying cancer-associated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine meta-static process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials-NCI--H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.
Collapse
Affiliation(s)
- Hophil Min
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Dohyun Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Yikwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jee Yeon Cho
- Division of Life Sciences and Biotechnology, Korea University, Seoul 136-701,
Korea
| | - Jonghwa Jin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
13
|
Daly C, Ng LL, Hakimi A, Willingale R, Jones DJL. Qualitative and quantitative characterization of plasma proteins when incorporating traveling wave ion mobility into a liquid chromatography-mass spectrometry workflow for biomarker discovery: use of product ion quantitation as an alternative data analysis tool for label free quantitation. Anal Chem 2014; 86:1972-9. [PMID: 24397486 PMCID: PMC3998518 DOI: 10.1021/ac403901t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/07/2014] [Indexed: 01/13/2023]
Abstract
Discovery of protein biomarkers in clinical samples necessitates significant prefractionation prior to liquid chromatography-mass spectrometry (LC-MS) analysis. Integrating traveling wave ion mobility spectrometry (TWIMS) enables in-line gas phase separation which when coupled with nanoflow liquid chromatography and data independent acquisition tandem mass spectrometry, confers significant advantages to the discovery of protein biomarkers by improving separation and inherent sensitivity. Incorporation of TWIMS leads to a packet of concentrated ions which ultimately provides a significant improvement in sensitivity. As a consequence of ion packeting, when present at high concentrations, accurate quantitation of proteins can be affected due to detector saturation effects. Human plasma was analyzed in triplicate using liquid-chromatography data independent acquisition mass spectrometry (LC-DIA-MS) and using liquid-chromatography ion-mobility data independent acquisition mass spectrometry (LC-IM-DIA-MS). The inclusion of TWIMS was assessed for the effect on sample throughput, data integrity, confidence of protein and peptide identification, and dynamic range. The number of identified proteins is significantly increased by an average of 84% while both the precursor and product mass accuracies are maintained between the modalities. Sample dynamic range is also maintained while quantitation is achieved for all but the most abundant proteins by incorporating a novel data interpretation method that allows accurate quantitation to occur. This additional separation is all achieved within a workflow with no discernible deleterious effect on throughput. Consequently, TWIMS greatly enhances proteome coverage and can be reliably used for quantification when using an alternative product ion quantification strategy. Using TWIMS in biomarker discovery in human plasma is thus recommended.
Collapse
Affiliation(s)
- Charlotte
E. Daly
- Department
of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Leong L. Ng
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Amirmansoor Hakimi
- Department
of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Richard Willingale
- Department
of Physics and Astronomy, University of Leicester, University
Road, Leicester, United Kingdom
| | - Donald J. L. Jones
- Department
of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
14
|
Syafrizayanti, Betzen C, Hoheisel JD, Kastelic D. Methods for analyzing and quantifying protein–protein interaction. Expert Rev Proteomics 2014; 11:107-20. [DOI: 10.1586/14789450.2014.875857] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Schauer KL, Freund DM, Prenni JE, Curthoys NP. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis. Am J Physiol Renal Physiol 2013; 305:F628-40. [PMID: 23804448 PMCID: PMC3761203 DOI: 10.1152/ajprenal.00210.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.
Collapse
Affiliation(s)
- Kevin L Schauer
- Dept. of Biochemistry and Molecular Biology, Colorado State Univ., Campus Delivery 1870, Ft. Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|