1
|
Zhang Q, Yu X, Wang R, Wu Y, Shi F, Zhang Y, Zhao H, Xu H, Pan J, Wang Y, Tu M, Chang J, Zhu Z, He G, Chen M, Chen L, Yang G, Li Y. TaPP2C-a6 interacts with TaDOG1Ls and regulates seed dormancy and germination in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40418648 DOI: 10.1111/pbi.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/22/2024] [Accepted: 05/10/2025] [Indexed: 05/28/2025]
Abstract
Modern wheat cultivation requires seed to germinate rapidly and uniformly with weak dormancy. However, such varieties tend to undergo pre-harvest sprouting (PHS) if the harvest overlaps with the rainy season, causing substantial yield losses. Knowledge regarding the mechanisms of seed dormancy in wheat (Triticum aestivum L.) is limited, with only a few causal genes of the many PHS quantitative trait loci (QTLs) characterized. Here, we emphasize the involvement of ABA signalling core components in regulating seed dormancy and germination in wheat. TaPP2C-a6 was identified as the likely causal gene of wheat PHS-QTLs QPhs.wsu-1A/1B and QPhs1D.1_nwafu loci. Both TaPP2C-a6 and TaPP2C-a7 were highly expressed at embryonic developmental stages and germinating seeds, whereas TaPP2C-a6 was up-regulated during embryo maturation and seed germination. TaPP2C-a6 and TaPP2C-a7 were clade-A PP2Cs that interacted with TaPYLs and class III TaSnRK2s; however, TaPP2C-a6 showed stronger interactions with TaDOG1L members than those of TaPP2C-a7. TaPP2C-a6 overexpression in transgenic Arabidopsis thaliana caused a more severe reduction in ABA sensitivity than TaPP2C-a7 overexpression. Overexpression of TaPP2C-a6 in transgenic A. thaliana and wheat increased PHS levels, whereas TaPP2C-a7 transgenic A. thaliana did not affect PHS levels, confirming that TaPP2C-a6 is a novel regulator of wheat seed dormancy and germination. In summary, we demonstrated that leveraging the knowledge of seed dormancy and germination from model species could rapidly identify the causal genes of PHS-QTLs in wheat. Significantly, we showed that the TaPP2C-TaDOG1L interactions, particularly the interaction strength, could be a new aspect in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huazhen Xu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Pan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanwang Zhu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Samarah NH, Al-Quraan NA, Shawah'en RI. The relationship between GABA content and desiccation tolerance at five developmental stages of wheat ( Triticum durum) seeds. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24216. [PMID: 39836508 DOI: 10.1071/fp24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Drying wheat (Triticum durum ) seeds within their spikes may improve the seed desiccation tolerance. This study aimed to understand the effect of drying wheat seeds within their spikes on their desiccation tolerance in association with GABA (γ-aminobutyric acid) content, malondialdehyde (MDA), the expression of three dehydrin genes (dhn , wcor , dreb ) during seed development. Seeds of wheat variety 'Hourani-Nawawi' were harvested at five developmental stages: (1) milk (ML); (2) soft dough (SD); (3) hard dough (HD); (4) physiological maturity (PM); and (5) harvest maturity (HM) and dried either attached to or detached from their spikes. Drying the seeds attached to their spikes improved desiccation tolerance, speed of germination, and seedling length at ML stage. Before drying (freshly harvested), the seeds harvested at ML and HM had higher GABA than those at SD, HD, and PM. The attached-dried seeds had higher GABA content from ML to PM than at HM, and higher glutamate content at ML, SD, and HD than at the PM stage. Detached-dried seeds had the highest alanine at ML and PM. Attached-dried seeds had lower MDA than detached-dried seeds. Expression of dhn was highest in freshly-harvested and attached-dried seeds at SD. Highest expression of wcor in the attached-dried seeds was detected at SD and HM. Drying the seeds within their spikes increased the expression of dreb gene compared with the freshly-harvested seeds, except at the HD stage. In conclusion, drying the seeds within their spikes enhanced seed germination in association with higher GABA, lower MDA, and higher gene expression.
Collapse
Affiliation(s)
- Nezar H Samarah
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Nisreen A Al-Quraan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roa'a I Shawah'en
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
3
|
Cai G, Niu M, Sun Z, Wang H, Zhang S, Liu F, Wu Y, Wang G. A small heat shock protein (SlHSP17.3) in tomato plays a positive role in salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1443625. [PMID: 39464285 PMCID: PMC11503465 DOI: 10.3389/fpls.2024.1443625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Small heat shock proteins (sHSPs) are molecular chaperones that are widely present in plants and play a vital role in the response of plants to various environmental stimuli. This study employed transgenic Arabidopsis to investigate the impact of the new tomato (Solanum lycopersicum) sHSP protein (SlHSP17.3) on salt stress tolerance. Transient conversion analysis of Arabidopsis protoplasts revealed that SlHSP17.3 localized to the cytoplasm. Furthermore, as suggested by expression analysis, salt stress stimulated SlHSP17.3 expression, suggesting that SlHSP17.3 is involved in the salt stress response of plants. SlHSP17.3-overexpressing plants presented greater germination rates, fresh weights, chlorophyll contents, and Fv/Fm ratios, as well as longer root lengths, lower reactive oxygen species (ROS) levels, and lighter cell membrane injury under salt stress. Furthermore, certain stress-related genes (AtCOR15, AtDREB1B, and AtHSFA2) were up-regulated in salt-stressed transgenic plants. Overall, SlHSP17.3 overexpression improved the salt stress resistance of transgenic plants, mainly through increasing AtCOR15, AtDREB1B, and AtHSFA2 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guodong Wang
- School of Biological Sciences, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
4
|
Wang P, Zhang T, Li Y, Zhao X, Liu W, Hu Y, Wang J, Zhou Y. Comprehensive analysis of Dendrobium catenatum HSP20 family genes and functional characterization of DcHSP20-12 in response to temperature stress. Int J Biol Macromol 2024; 258:129001. [PMID: 38158058 DOI: 10.1016/j.ijbiomac.2023.129001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Heat shock proteins (HSPs) are a class of protective proteins in response to abiotic stress in plants, and HSP20 plays an essential role in response to temperature stress. However, there are few studies on HSP20 in Dendrobium catenatum. In this study, 18 DcHSP20 genes were identified from the D. catenatum genome. Phylogenetic analysis showed that DcHSP20s could be classified into six subgroups, each member of which has similar conserved motifs and gene structures. Gene expression analysis of 18 DcHSP20 genes revealed that they exhibited variable expression patterns in different plant tissues. Meanwhile, all 18 DcHSP20 genes were induced to be up-regulated under high temperature, while six genes (DcHSP20-2/9/10/12/16/17) were significantly up-regulated under low temperature. Moreover, combining gene expression under high and low temperature stress, the DcHSP20-12 gene was cloned for functional analysis. The germination ratios, fresh weights, root lengths of two DcHSP20-12-overexpressing transgenic Arabidopsis thaliana lines were significantly higher, but MDA contents were lower than that of wild-type (WT) plants under heat and cold stresses, displayed enhanced thermotolerance and cold-resistance. These results lay a foundation for the functional characterization of DcHSP20s and provide a candidate gene, DcHSP20-12, for improving the tolerance of D. catenatum to temperature stress in the future.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Tingting Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Xi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Wen Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China; Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 571199, Hainan, China
| | - Jian Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yang Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
5
|
Wang Y, Wang W, Chi X, Cheng M, Wang T, Zhan X, Bai Y, Shen C, Li X. Analysis and Identification of Genes Associated with the Desiccation Sensitivity of Panax notoginseng Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:3881. [PMID: 38005778 PMCID: PMC10674602 DOI: 10.3390/plants12223881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and difficult to store for a long time. However, few data are available on the mechanism of the desiccation sensitivity of P. notoginseng seeds. To gain a comprehensive perspective of the genes associated with desiccation sensitivity, cDNA libraries from seeds under control and desiccation processes were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. In total, 12,025 differentially expressed genes (DEGs) were identified during the desiccation process. Among these DEGs, a number of central metabolism, hormonal network-, fatty acid-, and ascorbate-glutathione-related genes were included. Our data provide a comprehensive resource for identifying the genes associated with the desiccation sensitivity of P. notoginseng seeds.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Weiqing Wang
- Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xiulian Chi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Meng Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Xiaori Zhan
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China; (X.Z.); (C.S.)
| | - Yunjun Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Chenjia Shen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China; (X.Z.); (C.S.)
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| |
Collapse
|
6
|
Jia JS, Ge N, Wang QY, Zhao LT, Chen C, Chen JW. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics 2023; 24:126. [PMID: 36932328 PMCID: PMC10024439 DOI: 10.1186/s12864-023-09229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.
Collapse
Affiliation(s)
- Jin-Shan Jia
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Na Ge
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Qing-Yan Wang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Li-Ting Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Cui Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
| |
Collapse
|
7
|
Niñoles R, Planes D, Arjona P, Ruiz-Pastor C, Chazarra R, Renard J, Bueso E, Forment J, Serrano R, Kranner I, Roach T, Gadea J. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity. PLANT, CELL & ENVIRONMENT 2022; 45:2708-2728. [PMID: 35672914 DOI: 10.1111/pce.14374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Collapse
Affiliation(s)
- Regina Niñoles
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Planes
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Arjona
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carmen Ruiz-Pastor
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Rubén Chazarra
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Joan Renard
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Eduardo Bueso
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Javier Forment
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ramón Serrano
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - José Gadea
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
8
|
Wu J, Gao T, Hu J, Zhao L, Yu C, Ma F. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154054. [PMID: 35202686 DOI: 10.1016/j.scitotenv.2022.154054] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Plants respond to various stresses by triggering the expression of genes that encode proteins involved in plant growth, fruit ripening, cellular protein homeostasis, and tolerance systems. sHSPs, a subfamily of heat shock proteins (HSPs), can be expressed in plants to inhibit abnormal aggregation of proteins and protect normal proteins by interacting with folding target proteins, protect cell integrity, and improve resistance under various adverse conditions. Thus, sHSPs have significant influences on seed germination and plant development. In this review, the classification, structure, and functions of sHSP family members in plants are systematically summarized, with emphasis on their roles in promoting fruit ripening and plant growth by reducing the accumulation of ROS, improving the survival rate of plants and the antioxidant activity, and protecting photosynthesis under biotic and abiotic stresses. Meanwhile, the production and regulatory mechanisms of sHSPs are described in detail. Heat shock factors, long non-coding RNA (lncRNAs), microRNA (miRNAs), and FK506 binding proteins are related to the production process of sHSPs. Molecular chaperone complex HSP70/100, plastidic proteins, and abscisic acid (ABA) are involved in the regulatory mechanisms of sHSPs. Besides, scientific efforts and practices for improving plant stress resistance have carried out the constitutive expression of sHSPs in transgenic plants in recent years. It is a powerful path for inducing the protective mechanisms of plants under various stresses. Therefore, exploring the role of sHSPs in the plant defense system paves a way for comprehensively unraveling plant tolerance in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
9
|
Ling J, Xia Y, Hu J, Zhu T, Wang J, Zhang H, Kong L. Integrated Lipidomic and Transcriptomic Analysis Reveals Phospholipid Changes in Somatic Embryos of Picea asperata in Response to Partial Desiccation. Int J Mol Sci 2022; 23:ijms23126494. [PMID: 35742942 PMCID: PMC9223630 DOI: 10.3390/ijms23126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Partial desiccation treatment (PDT) is an effective technology for promoting the germination and conversion of conifer somatic embryos (SEs). PDT, as a drought stress, induces intensive physiological responses in phospholipid metabolism, which are not well understood in the conifer SEs. Here, we integrated lipidomics, transcriptomics and proteomics analyses to reveal the molecular basis of lipid remodeling under PDT in Picea asperata SEs. Among the 82 lipid molecular species determined by mass spectrometry, phosphatidic acid (PA) had a significant effect after PDT and was the most critical lipid in the response to PDT. The transcriptomics results showed that multiple transcripts in the glycerolipid and glycerophospholipid metabolism pathways were differentially expressed, and these included five PLDα1 transcripts that catalyze the conversion of phosphatidylcholine (PC) to PA. Furthermore, the enzyme activity of this phospholipase D (PLD) was significantly enhanced in response to PDT, and PDT also significantly increased the protein level of PLDα1 (MA_10436582g0020). In addition, PA is a key factor in gibberellin, abscisic acid and ethylene signal transduction. One GDI1, one DELLA, three ABI1s, two SnRK2s, one CTR and 12 ERFs showed significantly differential expression between SEs before and after PDT in this study. Our data suggest that the observed increases in the PA contents might result from the activation of PLDα by PDT. PA not only affects the physical and chemical properties of the cell membrane but also participates in plant hormone signal transduction. Our work provides novel insight into the molecular mechanism through which PDT promotes the germination of SEs of coniferous tree species and fills the gap in the understanding of the mechanism of somatic embryo lipid remodeling in response to PDT.
Collapse
Affiliation(s)
- Juanjuan Ling
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
| | - Yan Xia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
- Correspondence: (T.Z.); (J.W.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
- Correspondence: (T.Z.); (J.W.)
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
10
|
Eliášová K, Konrádová H, Dobrev PI, Motyka V, Lomenech AM, Fischerová L, Lelu-Walter MA, Vondráková Z, Teyssier C. Desiccation as a Post-maturation Treatment Helps Complete Maturation of Norway Spruce Somatic Embryos: Carbohydrates, Phytohormones and Proteomic Status. FRONTIERS IN PLANT SCIENCE 2022; 13:823617. [PMID: 35237290 PMCID: PMC8882965 DOI: 10.3389/fpls.2022.823617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/04/2022] [Indexed: 06/12/2023]
Abstract
Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase. Multivariate comparison of mature somatic embryos with mature desiccated somatic embryos and/or zygotic embryos provided new insights into the processes involved during the desiccation step of somatic embryogenesis. Desiccated embryos were characterized by reduced levels of starch and soluble carbohydrates but elevated levels of raffinose family oligosaccharides. Desiccation treatment decreased the content of abscisic acid and its derivatives but increased total auxins and cytokinins. The content of phytohormones in dry zygotic embryos was lower than in somatic embryos, but their profile was mostly analogous, apart from differences in cytokinin profiles. The biological processes "Acquisition of desiccation tolerance", "Response to stimulus", "Response to stress" and "Stored energy" were activated in both the desiccated somatic embryos and zygotic embryos when compared to the proteome of mature somatic embryos before desiccation. Based on the specific biochemical changes of important constituents (abscisic acid, raffinose, stachyose, LEA proteins and cruciferins) induced by the desiccation treatment and observed similarities between somatic and zygotic P. abies embryos, we concluded that the somatic embryos approximated to a state of desiccation tolerance. This physiological change could be responsible for the reorientation of Norway spruce somatic embryos toward a stage suitable for germination.
Collapse
Affiliation(s)
- Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Konrádová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Lucie Fischerová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
11
|
dos Santos-Donado PR, Donado-Pestana CM, Kawahara R, Rosa-Fernandes L, Palmisano G, Finardi-Filho F. Comparative analysis of the protein profile from biofortified cultivars of quality protein maize and conventional maize by gel-based and gel-free proteomic approaches. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Quercus ilex Species Based on Protein Signatures as Revealed by 2-DE Coupled to MALDI-TOF/TOF Proteomics Strategy. Int J Mol Sci 2020; 21:ijms21144870. [PMID: 32660160 PMCID: PMC7402289 DOI: 10.3390/ijms21144870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Unlike orthodox species, seed recalcitrance is poorly understood, especially at the molecular level. In this regard, seed maturation and germination were studied in the non-orthodox Quercus ilex by using a proteomics strategy based on two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization/time of flight (2-DE-MALDI-TOF).Cotyledons and embryo/radicle were sampled at different developmental stages, including early (M1–M3), middle (M4–M7), and late (M8–M9) seed maturation, and early (G1–G3) and late (G4–G5) germination. Samples corresponding to non-germinating, inviable, seeds were also included. Protein extracts were subjected to 2-dimensional gel electrophoresis (2-DE) and changes in the protein profiles were analyzed. Identified variable proteins were grouped according to their function, being the energy, carbohydrate, lipid, and amino acid metabolisms, together with protein fate, redox homeostasis, and response to stress are the most represented groups. Beyond the visual aspect, morphometry, weight, and water content, each stage had a specific protein signature. Clear tendencies for the different protein groups throughout the maturation and germination stages were observed for, respectively, cotyledon and the embryo axis. Proteins related to metabolism, translation, legumins, proteases, proteasome, and those stress related were less abundant in non-germinating seeds, it related to the loss of viability. Cotyledons were enriched with reserve proteins and protein-degrading enzymes, while the embryo axis was enriched with proteins of cell defense and rescue, including heat-shock proteins (HSPs) and antioxidants. The peaks of enzyme proteins occurred at the middle stages (M6–M7) in cotyledons and at late ones (M8–M9) in the embryo axis. Unlike orthodox seeds, proteins associated with glycolysis, tricarboxylic acid cycle, carbohydrate, amino acid and lipid metabolism are present at high levels in the mature seed and were maintained throughout the germination stages. The lack of desiccation tolerance in Q. ilex seeds may be associated with the repression of some genes, late embryogenesis abundant proteins being one of the candidates.
Collapse
|
13
|
Genomics and transcriptomics analysis reveals the mechanism of isobutanol tolerance of a laboratory evolved Lactococcus lactis strain. Sci Rep 2020; 10:10850. [PMID: 32616741 PMCID: PMC7331579 DOI: 10.1038/s41598-020-67635-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Isobutanol, in spite of its significant superiority over ethanol as a biofuel, remains commercially non-viable due to the non-availability of a suitable chassis which can handle the solvent toxicity associated with its production. To meet this challenge, we chose Lactococcus lactis which is known for its ability to handle environmental stress and carried out Adaptive laboratory evolution (ALE) in a continuous stirred tank reactor (CSTR) to evolve an isobutanol tolerant strain. The strain was grown for more than 60 days (> 250 generations) while gradually increasing the selection pressure, i.e. isobutanol concentration, in the feed. This led to the evolution of a strain that had an exceptionally high tolerance of up to 40 g/l of isobutanol even though a scanning electron microscope (SEM) study as well as analysis of membrane potential revealed only minor changes in cellular morphology. Whole genome sequencing which was done to confirm the strain integrity also showed comparatively few mutations in the evolved strain. However, the criticality of these mutations was reflected in major changes that occurred in the transcriptome, where gene expression levels from a wide range of categories that involved membrane transport, amino acid metabolism, sugar uptake and cell wall synthesis were significantly altered. Analysing the synergistic effect of these changes that lead to the complex phenotype of isobutanol tolerance can help in the construction of better host platforms for isobutanol production.
Collapse
|
14
|
Lando AP, Viana WG, Vale EM, Santos M, Silveira V, Steiner N. Cellular alteration and differential protein profile explain effects of GA 3 and ABA and their inhibitor on Trichocline catharinensis (Asteraceae) seed germination. PHYSIOLOGIA PLANTARUM 2020; 169:258-275. [PMID: 32065665 DOI: 10.1111/ppl.13076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Seed physiology of wild species has not been studied as deeply as that of domesticated crop species. Trichocline catharinensis (Asteraceae) is an endemic wildflower species from the high-altitude fields of southern Brazil. This species is of interest as a source of genes to improve cultivated Asteraceae because of its ornamental features, disease resistance and ability to tolerate drought and poor soil conditions. We studied the effects of abscisic acid (ABA) and gibberellic acid (GA3 ) and their inhibitors, fluridone (FLU) and paclobutrazol (PAC), on seed germination. We individually assessed ultrastructural changes and differential protein accumulation. The principal component analysis explained 69.66% of differential accumulation for 32 proteins at phase II of seed germination in response to hormone and inhibitor treatment. GA3 -imbibed seed germination (98.75%) resulted in increased protein accumulation to meet energy demand, redox regulation, and reserve metabolism activation. FLU-imbibed seeds showed a higher germination speed index as a consequence of metabolism activation. ABA-imbibed seeds (58.75%) showed osmotolerance and flattened cells in the hypocotyl-radicular axis, suggesting that ABA inhibits cell expansion. PAC-imbibed seeds remained at phase II for 300 h, and germination was suppressed (7.5%) because of the increased signaling proteins and halted reserve mobilization. Therefore, our findings provide insight into the behavior of Asteraceae non-dormant seed germination, which broadens our knowledge of seed germination in a wild and endemic plant species from a threatened ecosystem.
Collapse
Affiliation(s)
- Ana P Lando
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Willian G Viana
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ellen M Vale
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
- Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marisa Santos
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
- Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Neusa Steiner
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
15
|
Liu D, Han C, Deng X, Liu Y, Liu N, Yan Y. Integrated physiological and proteomic analysis of embryo and endosperm reveals central salt stress response proteins during seed germination of winter wheat cultivar Zhengmai 366. BMC PLANT BIOLOGY 2019; 19:29. [PMID: 30658564 PMCID: PMC6339335 DOI: 10.1186/s12870-019-1643-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salinity is a major abiotic stressor that affects seed germination, plant growth, and crop production. Seed germination represents the beginning of plant growth and is closely linked with subsequent crop development and ultimate yield formation. This study attempted to extend findings regarding the potential proteomic dynamics during wheat seed germination under salt stress and to explore the mechanism of crop salt response. RESULTS Salt stress significantly affected seed physiological activities during the germination process, resulting in significant decreases in phytohormone and α-amylase activity and significant increases in soluble sugar, starch, and ADP glucose pyrophosphorylase activity. A comparative proteomics approach was applied to analyze the dynamic proteome changes of embryo and endosperm during seed germination in Chinese winter wheat cultivar Zhengmai 366 under salt stress. Two-dimensional electrophoresis identified 92 and 61 differentially accumulated proteins (DAPs) in response to salt stress in embryo and endosperm, respectively. Both organs contained a high proportion of DAPs involved in stress defense, energy metabolism, and protein/amino acid metabolism. The endosperm had more DAPs related to storage proteins and starch metabolism than the embryo, and 2% of DAPs participating in lipid and sterol metabolism were specifically detected in the embryo. CONCLUSIONS Seed physiological activities were significantly affected during the germination process when subjected to salt stress. The DAPs involved in stress defense and energy metabolism were upregulated whereas those related to reserve substance degradation and protein/amino acid metabolism were significantly downregulated, leading to delayed seed germination under salt stress. Our proteomic results revealed synergistic regulation of the response to salt stress during seed germination.
Collapse
Affiliation(s)
- Dongmiao Liu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Caixia Han
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Xiong Deng
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yue Liu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Nannan Liu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, Beijing, 100048 China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
16
|
Zhang N, Shi J, Zhao H, Jiang J. Activation of small heat shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato. Gene 2018; 679:90-99. [DOI: 10.1016/j.gene.2018.08.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
|
17
|
Satour P, Youssef C, Châtelain E, Vu BL, Teulat B, Job C, Job D, Montrichard F. Patterns of protein carbonylation during Medicago truncatula seed maturation. PLANT, CELL & ENVIRONMENT 2018; 41:2183-2194. [PMID: 29543987 DOI: 10.1111/pce.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Seeds mainly acquire their physiological quality during maturation, whereas oxidative conditions reign within cells triggering protein carbonylation. To better understand the role of this protein modification in legume seeds, we compared by proteomics patterns of carbonylated proteins in maturing seeds of Medicago truncatula naturally desiccated or prematurely dried, a treatment known to impair seed quality acquisition. In both cases, protein carbonylation increased in these seeds, accompanying water removal. We identified several proteins whose extent of carbonylation varied when comparing natural desiccation and premature drying and that could therefore be responsible for the impairment of seed quality acquisition or expression. In particular, we focused on PM34, a protein specific to seeds exhibiting a high sensitivity to carbonylation and of which function in dicotyledons was not known before. PM34 proved to have a cellulase activity presumably associated with cell elongation, a process required for germination and subsequent seedling growth. We discuss the possibility that PM34 (abundance or redox state) could be used to assess crop seed quality.
Collapse
Affiliation(s)
- Pascale Satour
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Chvan Youssef
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Emilie Châtelain
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Benoît Ly Vu
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Béatrice Teulat
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| | - Claudette Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Dominique Job
- Laboratoire mixte CNRS/Université Claude Bernard Lyon/INSA/Bayer CropScience-UMR 5240, Bayer CropScience-14, rue Pierre Baizet, 69263, Lyon cedex 9, France
| | - Françoise Montrichard
- IRHS, Université d'Angers, INRA, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Beaucouzé, France
| |
Collapse
|
18
|
Wang WQ, Wang Y, Zhang Q, Møller IM, Song SQ. Changes in the mitochondrial proteome of developing maize seed embryos. PHYSIOLOGIA PLANTARUM 2018; 163:552-572. [PMID: 29575040 DOI: 10.1111/ppl.12725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 05/19/2023]
Abstract
Mitochondria are required for seed development, but little information is available about their function and role during this process. We isolated the mitochondria from developing maize (Zea mays L. cv. Nongda 108) embryos and investigated the mitochondrial membrane integrity and respiration as well as the mitochondrial proteome using two proteomic methods, the two-dimensional gel electrophoresis (2-DE) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH). Mitochondrial membrane integrity and respiration were maintained at a high level up to 21 days after pollination (DAP) and decreased thereafter, while total mitochondrial number, cytochrome c oxidase activity and respiration per embryo exhibited a bell-shaped change with peaks at 35-45 DAP. A total of 286 mitochondrial proteins changed in abundance during embryo development. During early stages of seed development (up to 21 DAP), proteins involved in energy production, basic metabolism, protein import and folding as well as removal of reactive oxygen species dominated, while during mid or late stages (35-70 DAP), some stress- and detoxification-related proteins increased in abundance. Our study, for the first time, depicted a relatively comprehensive map of energy production by mitochondria during embryo development. The results revealed that mitochondria were very active during the early stages of maize embryo development, while at the late stages of development, the mitochondria became more quiescent, but well-protected, presumably to ensure that the embryo passes through maturation, drying and long-term storage. These results advance our understanding of seed development at the organelle level.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yue Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Qi Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Ian M Møller
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
19
|
Shen W, Yao X, Ye T, Ma S, Liu X, Yin X, Wu Y. Arabidopsis Aspartic Protease ASPG1 Affects Seed Dormancy, Seed Longevity and Seed Germination. PLANT & CELL PHYSIOLOGY 2018; 59:1415-1431. [PMID: 29648652 DOI: 10.1093/pcp/pcy070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Seed storage proteins (SSPs) provide free amino acids and energy for the process of seed germination. Although degradation of SSPs by the aspartic proteases isolated from seeds has been documented in vitro, there is still no genetic evidence for involvement of aspartic proteases in seed germination. Here we report that the aspartic protease ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) plays an important role in the process of dormancy, viability and germination of Arabidopsis seeds. We show that aspg1-1 mutants have enhanced seed dormancy and reduced seed viability. A significant increase in expression of DELLA genes which act as repressors in the gibberellic acid signal transduction pathway were detected in aspg1-1 during seed germination. Seed germination of aspg1-1 mutants was more sensitive to treatment with paclobutrazol (PAC; a gibberellic acid biosynthesis inhibitor). In contrast, seed germination of ASPG1 overexpression (OE) transgenic lines showed resistant to PAC. The degradation of SSPs in germinating seeds was severely impaired in aspg1-1 mutants. Moreover, the development of aspg1-1 young seedlings was arrested when grown on the nutrient-free medium. Thus ASPG1 is important for seed dormancy, seed longevity and seed germination, and its function is associated with degradation of SSPs and regulation of gibberellic acid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sheng Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Wen D, Xu H, Xie L, He M, Hou H, Zhang C. A loose endosperm structure of wheat seed produced under low nitrogen level promotes early germination by accelerating water uptake. Sci Rep 2017; 7:3116. [PMID: 28596607 PMCID: PMC5465190 DOI: 10.1038/s41598-017-03333-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023] Open
Abstract
Water uptake is the fundamental requirement for the initiation and completion of seed germination that is a vital phase in the life cycle of seed plants. We found that seeds produced under four nitrogen levels showed significantly different germination speed. The objective of this study was to study the mechanism of rapid seed germination and explore which pathways and genes play critical roles in radicle protrusion. Anatomical data revealed that seed protein content affected endosperm structure of seeds. Moreover, scanning electron microscope maps showed that faster germinated seeds had a looser endosperm structure compared with other seeds. Subsequently, high throughout RNA-seq data were used to compare the transcriptomes of imbibed seeds with different germination speed. Gene ontology (GO) term enrichment analysis revealed that cell wall metabolism related genes significantly up-regulated in faster germinated seeds. In these genes, the top four were chitinase that had about fourfold higher expression in faster germinated seeds. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that faster germinated seeds had enhanced expression in glutathione metabolism. By combining these results, we propose a model for nitrogen fertilizer affects germination speed of wheat seed, which provide new insights into seed germination.
Collapse
Affiliation(s)
- Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Haicheng Xu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Liuyong Xie
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Mingrong He
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Hongcun Hou
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province, 271018, P.R. China.
| |
Collapse
|
21
|
Xu HH, Liu SJ, Song SH, Wang RX, Wang WQ, Song SQ. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:219-42. [PMID: 27035683 DOI: 10.1016/j.plaphy.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 05/09/2023]
Abstract
Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQ synthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Rui-Xia Wang
- College of Life Science, Linyi University, Linyi 276005, China
| | - Wei-Qing Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
22
|
Bona E, Scarafoni A, Marsano F, Boatti L, Copetta A, Massa N, Gamalero E, D’Agostino G, Cesaro P, Cavaletto M, Berta G. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Sci Rep 2016; 6:26439. [PMID: 27216714 PMCID: PMC4877657 DOI: 10.1038/srep26439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses.
Collapse
Affiliation(s)
- Elisa Bona
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Alessio Scarafoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Francesco Marsano
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Lara Boatti
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Andrea Copetta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Elisa Gamalero
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | | | - Patrizia Cesaro
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Graziella Berta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| |
Collapse
|
23
|
Zhang H, Wang WQ, Liu SJ, Møller IM, Song SQ. Proteome Analysis of Poplar Seed Vigor. PLoS One 2015; 10:e0132509. [PMID: 26172265 PMCID: PMC4501749 DOI: 10.1371/journal.pone.0132509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
Seed vigor is a complex property that determines the seed’s potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30°C and 75±5% relative humidity for different periods of time (0–90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|