1
|
Luo LL, Lin Y, Linghu JH, Gong W, Luo YH, Liu M, Jin DC, Smagghe G, Liu TX, Gui SH, Yi TC. Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress. INSECT SCIENCE 2024; 31:773-791. [PMID: 37689966 DOI: 10.1111/1744-7917.13264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/11/2023]
Abstract
Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Yang Lin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Yuan-Hong Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Hou L, Wang N, Sun T, Wang X. Neuropeptide regulations on behavioral plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101119. [PMID: 37741615 DOI: 10.1016/j.cois.2023.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Social insects demonstrate remarkable behavioral flexibility in response to complex external and social environments. One of the most striking examples of this adaptability is the context-dependent division of labor among workers of bees and ants. Neuropeptides, the brain's most diverse group of messenger molecules, play an essential role in modulating this phenotypic plasticity related to labor division in social insects. Integrated omics research and mass spectrometry imaging technology have greatly accelerated the identification and spatiotemporal analysis of neuropeptides. Moreover, key roles of several neuropeptides in age- and caste-dependent behavioral plasticity have been uncovered. This review summarizes recent advances in the characterization, expression, distribution, and functions of neuropeptides in controlling behavioral plasticity in social insects, particularly bees and ants. The article concludes with a discussion of future directions and challenges in understanding the regulation of social behavior by neuropeptides.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Nanying Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Tianle Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
3
|
Barbero F, Mannino G, Casacci LP. The Role of Biogenic Amines in Social Insects: With a Special Focus on Ants. INSECTS 2023; 14:386. [PMID: 37103201 PMCID: PMC10142254 DOI: 10.3390/insects14040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Eusociality represents the higher degree of interaction in insects. This complex social structure is maintained through a multimodal communication system that allows colony members to be flexible in their responses, fulfilling the overall society's needs. The colony plasticity is supposedly achieved by combining multiple biochemical pathways through the neuromodulation of molecules such as biogenic amines, but the mechanisms through which these regulatory compounds act are far from being fully disentangled. Here, we review the potential function of major bioamines (dopamine, tyramine, serotine, and octopamine) on the behavioral modulation of principal groups of eusocial Hymenoptera, with a special focus on ants. Because functional roles are species- and context-dependent, identifying a direct causal relationship between a biogenic amine variation and behavioral changes is extremely challenging. We also used a quantitative and qualitative synthesis approach to summarize research trends and interests in the literature related to biogenic amines of social insects. Shedding light on the aminergic regulation of behavioral responses will pave the way for an entirely new approach to understanding the evolution of sociality in insects.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Gioacchino Quarello 15/A, 10135 Turin, Italy;
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| |
Collapse
|
4
|
Liu Y, Wang S, Li X, Liu Y, Zhu X. NeuroPpred-SVM: A New Model for Predicting Neuropeptides Based on Embeddings of BERT. J Proteome Res 2023; 22:718-728. [PMID: 36749151 DOI: 10.1021/acs.jproteome.2c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuropeptides play pivotal roles in different physiological processes and are related to different kinds of diseases. Identification of neuropeptides is of great benefit for studying the mechanism of these physiological processes and the treatment of neurological disorders. Several state-of-the-art neuropeptide predictors have been developed by using a two-layer stacking ensemble algorithm. Although the two-layer stacking ensemble algorithm can improve the feature representability, these models are complex, which are not as efficient as the models based on one classifier. In this study, we proposed a new model, NeuroPpred-SVM, to predict neuropeptides based on the embeddings of Bidirectional Encoder Representations from Transformers and other sequential features by using a support vector machine (SVM). The experimental results indicate that our model achieved a cross-validation area under the receiver operating characteristic (AUROC) curve of 0.969 on the training data set and an AUROC of 0.966 on the independent test set. By comparing our model with the other four state-of-the-art models including NeuroPIpred, PredNeuroP, NeuroPpred-Fuse, and NeuroPpred-FRL on the independent test set, our model achieved the highest AUROC, Matthews correlation coefficient, accuracy, and specificity, which indicate that our model outperforms the existing models. We believed that NeuroPpred-SVM could be a useful tool for identifying neuropeptides with high accuracy and low cost. The data sets and Python code are available at https://github.com/liuyf-a/NeuroPpred-SVM.
Collapse
Affiliation(s)
- Yufeng Liu
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuyu Wang
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiang Li
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yinbo Liu
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
5
|
Cheng J, Yang X, Tian Z, Shen Z, Wang X, Zhu L, Liu X, Li Z, Liu X. Coordinated transcriptomics and peptidomics of central nervous system identify neuropeptides and their G protein-coupled receptors in the oriental fruit moth Grapholita molesta. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100882. [PMID: 34273641 DOI: 10.1016/j.cbd.2021.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023]
Abstract
The oriental fruit moth Grapholita molesta is a cosmopolitan pest of orchard, which causes serious economic losses to the fruit production. Neuropeptides and their specific receptors (primarily G protein-coupled receptors, GPCRs) regulate multiple biological functions in insects and represent promising next-generation pest management strategy. Here, we generated a transcriptome of the central nervous system (CNS) of G. molesta. Overall, 57 neuropeptide precursor genes were identified and 128 various mature peptides were predicted from these precursors. Using peptidomic analysis of CNS of G. molesta, we identified total of 28 mature peptides and precursor-related peptides from 16 precursors. A total of 41 neuropeptide GPCR genes belonging to three classes were also identified. These GPCRs and their probable ligands were predicted. Additionally, expression patterns of these 98 genes in various larval tissues were evaluated using quantitative real-time PCR. Taken together, these results will benefit further investigations to determine physiological functions and pharmacological characterization of neuropeptides and their GPCRs in G. molesta; and to develop specific neuropeptide-based agents for this tortricid fruit pest control.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueli Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Habenstein J, Schmitt F, Liessem S, Ly A, Trede D, Wegener C, Predel R, Rössler W, Neupert S. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J Neurochem 2021; 158:391-412. [PMID: 33704768 DOI: 10.1111/jnc.15346] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age-related polyethism characterized by age-related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age-related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants' central nervous system combined with brain extract analysis by Q-Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide-, neuropeptide-like, and protein hormone prepropeptide genes, including a novel neuropeptide-like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage-specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants.
Collapse
Affiliation(s)
- Jens Habenstein
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Franziska Schmitt
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Sander Liessem
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Alice Ly
- Bruker Daltonik GmbH, Bremen, Germany
| | - Dennis Trede
- SCiLS, Zweigniederlassung Bremen der Bruker Daltonik GmbH, Bremen, Germany
| | - Christian Wegener
- Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg Insect Research, University of Würzburg, Würzburg, Germany
| | - Reinhard Predel
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Susanne Neupert
- Department of Biology, Institute for Zoology, University of Cologne, Cologne, Germany.,Department of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
7
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
8
|
Yu K, Xiong S, Xu G, Ye X, Yao H, Wang F, Fang Q, Song Q, Ye G. Identification of Neuropeptides and Their Receptors in the Ectoparasitoid, Habrobracon hebetor. Front Physiol 2020; 11:575655. [PMID: 33178044 PMCID: PMC7596734 DOI: 10.3389/fphys.2020.575655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropeptides are a group of signal molecules that regulate many physiological and behavioral processes by binding to corresponding receptors, most of which are G-protein-coupled receptors (GPCRs). Using bioinformatic methods, we screened genomic and transcriptomic data of the ectoparasitoid wasp, Habrobracon hebetor, and annotated 34 neuropeptide candidate precursor genes and 44 neuropeptide receptor candidate genes. The candidate neuropeptide genes were found to encode all known insect neuropeptides except allatotropin, neuropeptide F, pigment dispersing factor, and CCHamides. When compared with the endoparasitic wasp Pteromalus puparum and the ectoparasitic wasp Nasonia vitripennis, trissin and FMRFamide were found only in H. hebetor. A similar result held for the neuropeptide receptor genes, for the receptors were found in H. hebetor except the receptors of CCHamides and neuroparsin. Furthermore, we compared and analyzed the differences in neuropeptides in eight Braconidae wasps and identified natalisin in H. hebetor, Diachasma alloeum, Fopius arisanus and Microplitis demolitor, but not in the other wasps. We also analyzed the transcriptome data and qRT-PCR data from different developmental stages and tissues to reveal the expression patterns of the neuropeptides and their receptors. In this study, we revealed composition of neuropeptides and neuropeptide receptors in H. hebetor, which may contribute to future neurobiological studies.
Collapse
Affiliation(s)
- Kaili Yu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xu
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Xu G, Teng ZW, Gu GX, Qi YX, Guo L, Xiao S, Wang F, Fang Q, Wang F, Song QS, Stanley D, Ye GY. Genome-wide characterization and transcriptomic analyses of neuropeptides and their receptors in an endoparasitoid wasp, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21625. [PMID: 31565815 DOI: 10.1002/arch.21625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
In insects, neuropeptides constitute a group of signaling molecules that act in regulation of multiple physiological and behavioral processes by binding to their corresponding receptors. On the basis of the bioinformatic approaches, we screened the genomic and transcriptomic data of the parasitoid wasp, Pteromalus puparum, and annotated 36 neuropeptide precursor genes and 33 neuropeptide receptor genes. Compared to the number of precursor genes in Bombyx mori (Lepidoptera), Chilo suppressalis (Lepidoptera), Drosophila melanogaster (Diptera), Nilaparvata lugens (Hemiptera), Apis mellifera (Hymenoptera), and Tribolium castaneum (Coleoptera), P. puparum (Hymenoptera) has the lowest number of neuropeptide precursor genes. This lower number may relate to its parasitic life cycle. Transcriptomic data of embryos, larvae, pupae, adults, venom glands, salivary glands, ovaries, and the remaining carcass revealed stage-, sex-, and tissue-specific expression patterns of the neuropeptides, and their receptors. These data provided basic information about the identity and expression profiles of neuropeptides and their receptors that are required to functionally address their biological significance in an endoparasitoid wasp.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Xiang Qi
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Department of Entomology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lei Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020; 11:640. [PMID: 33042012 PMCID: PMC7527416 DOI: 10.3389/fendo.2020.00640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides are the most abundant and diverse signal molecules in insects. They act as neurohormones and neuromodulators to regulate the physiology and behavior of insects. The majority of neuropeptides initiate downstream signaling pathways through binding to G protein-coupled receptors (GPCRs) on the cell surface. In this study, RNA-seq technology and bioinformatics were used to search for genes encoding neuropeptides and their GPCRs in the cowpea aphid Aphis craccivora. And the expression of these genes at different developmental stages of A. craccivora was analyzed by quantitative real-time PCR (qRT-PCR). A total of 40 candidate genes encoding neuropeptide precursors were identified from the transcriptome data, which is roughly equivalent to the number of neuropeptide genes that have been reported in other insects. On this basis, software analysis combined with homologous prediction estimated that there could be more than 60 mature neuropeptides with biological activity. In addition, 46 neuropeptide GPCRs were obtained, of which 40 belong to rhodopsin-like receptors (A-family GPCRs), including 21 families of neuropeptide receptors and 7 orphan receptors, and 6 belong to secretin-like receptors (B-family GPCRs), including receptors for diuretic hormone 31, diuretic hormone 44 and pigment-dispersing factor (PDF). Compared with holometabolous insects such as Drosophila melanogaster, the coding genes for sulfakinin, corazonin, arginine vasopressin-like peptide (AVLP), and trissin and the corresponding receptors were not found in A. craccivora. It is speculated that A. craccivora likely lacks the above neuropeptide signaling pathways, which is consistent with Acyrthosiphon pisum and that the loss of these pathways may be a common feature of aphids. In addition, expression profiling revealed neuropeptide genes and their GPCR genes that are differentially expressed at different developmental stages and in different wing morphs. This study will help to deepen our understanding of the neuropeptide signaling systems in aphids, thus laying the foundation for the development of new methods for aphid control targeting these signaling systems.
Collapse
Affiliation(s)
- Xiao Li
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Long Du
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao-Jing Jiang
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Qian Ju
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Chun-Juan Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Ming-Jing Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- *Correspondence: Ming-Jing Qu
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Tong-Xian Liu
| |
Collapse
|
11
|
Calkins TL, Tamborindeguy C, Pietrantonio PV. GPCR annotation, G proteins, and transcriptomics of fire ant (Solenopsis invicta) queen and worker brain: An improved view of signaling in an invasive superorganism. Gen Comp Endocrinol 2019; 278:89-103. [PMID: 30576645 DOI: 10.1016/j.ygcen.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Knowledge of G protein-coupled receptors (GPCRs) and their signaling modalities is crucial to advancing insect endocrinology, specifically in highly successful invasive social insects, such as the red imported fire ant, Solenopsis invicta Buren. In the first published draft genome of S. invicta, emphasis was placed on the annotation of olfactory receptors, and only the number of predicted GPCR genes was reported. Without an organized and curated resource for GPCRs, it will be difficult to test hypotheses on the endocrine role of neuropeptide hormones, or the function of neurotransmitters and neuromodulators. Therefore, we mined the S. invicta genome for GPCRs and found 324 predicted transcripts encoded by 125 predicted loci and improved the annotation of 55 of these loci. Among them are sixteen GPCRs that are currently annotated as "uncharacterized proteins". Further, the phylogenetic analysis of class A neuropeptide receptors presented here and the comparative listing of GPCRs in the hymenopterans S. invicta, Apis mellifera (both eusocial), Nasonia vitripennis (solitary), and the solitary model dipteran Drosophila melanogaster will facilitate comparative endocrinological studies related to social insect evolution and diversity. We compiled the 24 G protein transcripts predicted (15 α, 7 β, and 2 γ) from 12 G protein genes (5 α, 5 β, and 2 γ). Reproductive division of labor is extreme in this ant species, therefore, we compared GPCR and G protein gene expression among worker, mated queen and alate virgin queen ant brain transcriptomes. Transcripts for ten GPCRs and two G proteins were differentially expressed between queen and worker brains. The differentially expressed GPCRs are candidate receptors to explore hypotheses on division of labor in this species.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | | | |
Collapse
|
12
|
Hao K, Tu X, Ullah H, McNeill MR, Zhang Z. Novel Lom-dh Genes Play Potential Role in Promoting Egg Diapause of Locusta migratoria L. Front Physiol 2019; 10:767. [PMID: 31275172 PMCID: PMC6591537 DOI: 10.3389/fphys.2019.00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022] Open
Abstract
Diapause hormone (DH) neuropeptides in insects are produced by the genes belonging to pban/capa family. Previous studies show that DH contains a conserved sequence of WFGPRXa that plays vital role in diapause regulation of some Lepidopteran species. However, the function of DH in other species is still unknown. In order to expand our understanding of DH function in diapause induction, Lom-pban, Lom-capa, and five candidates DH precursor genes (Lom-dh1, Lom-dh2, Lom-dh3, Lom-dh4, Lom-dh5) of Locusta migratoria L. were subsequently cloned. We identified Lom-dh1 to Lom-dh5 as novel genes that encoded five types (type I–V) of 44 tandem repeats of DH-like neuropeptides, which might promote egg diapause of L. migratoria. To test this hypothesis, we identified four types of eight new neuropeptides encoded by Lom-dh using liquid chromatography–tandem mass spectrometry from the central neuron system of L. migratoria under both short (10:14 L:D) and long (16:8 L:D) photoperiods. Later on, we synthesized four type I DH-like neuropeptides, LDH1, SDH1, LDH2, and SDH2, encoded by Lom-dh2/Lom-dh3 and injected them into fifth instar female locusts. Egg diapause incidences were observed after female oviposition. The four DH-like neuropeptides significantly increased the incidence of egg diapause under the short photoperiod, but the response was absent under the long photoperiod. Injection of dsLom-dh into female adults of L. migratoria under the short photoperiod could inhibit egg diapause, with no response under the long photoperiod. This study identified a new member of pban/capa family being the second example beside Bombyx mori, where the DH showed significant role on maternal induction of diapause.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | | | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Veenstra JA. Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ 2019; 7:e7144. [PMID: 31245184 PMCID: PMC6585902 DOI: 10.7717/peerj.7144] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Insect neuropeptides are interesting for the potential their receptors hold as plausible targets for a novel generation of pesticides. Neuropeptide genes have been identified in a number of different species belonging to a variety of insects. Results suggest significant neuropeptide variation between different orders, but much less is known of neuropeptidome variability within an insect order. I therefore compared the neuropeptidomes of a number of Coleoptera. Methodology Publicly available genome sequences, transcriptomes and the original sequence data in the form of short sequence read archives were analyzed for the presence or absence of genes coding neuropeptides as well as some neuropeptide receptors in seventeen beetle species. Results Significant differences exist between the Coleoptera analyzed here, while many neuropeptides that were previously characterized from Tribolium castaneum appear very similar in all species, some are not and others are lacking in one or more species. On the other hand, leucokinin, which was presumed to be universally absent from Coleoptera, is still present in non-Polyphaga beetles. Conclusion The variability in neuropeptidome composition between species from the same insect order may be as large as the one that exists between species from different orders.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France
| |
Collapse
|
14
|
Ly A, Ragionieri L, Liessem S, Becker M, Deininger SO, Neupert S, Predel R. Enhanced Coverage of Insect Neuropeptides in Tissue Sections by an Optimized Mass-Spectrometry-Imaging Protocol. Anal Chem 2019; 91:1980-1988. [DOI: 10.1021/acs.analchem.8b04304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alice Ly
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Lapo Ragionieri
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Sander Liessem
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Becker
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | | | - Susanne Neupert
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Reinhard Predel
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
15
|
Chang J, Zhao J, Tian X. In silico prediction of neuropeptides in Hymenoptera parasitoid wasps. PLoS One 2018; 13:e0193561. [PMID: 29489917 PMCID: PMC5831470 DOI: 10.1371/journal.pone.0193561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Parasitoid wasps of the order Hymenoptera, the most diverse groups of animals, are important natural enemies of arthropod hosts in natural ecosystems and can be used in biological control. To date, only one neuropeptidome of a parasitoid wasp, Nasonia vitripennis, has been identified. This study aimed to identify more neuropeptides of parasitoid wasps, by using a well-established workflow that was previously adopted for predicting insect neuropeptide sequences. Based on publicly accessible databases, totally 517 neuropeptide precursors from 24 parasitoid wasp species were identified; these included five neuropeptides (CNMamide, FMRFamide-like, ITG-like, ion transport peptide-like and orcokinin B) that were identified for the first time in parasitoid wasps, to our knowledge. Next, these neuropeptides from parasitoid wasps were compared with those from other insect species. Phylogenetic analysis suggested the divergence of AST-CCC within Hymenoptera. Further, the encoding patterns of CAPA/PK family genes were found to be different between Hymenoptera species and other insect species. Some neuropeptides that were not found in some parasitoid superfamilies (e.g., sulfakinin), or considerably divergent between different parasitoid superfamilies (e.g., sNPF) might be related to distinct physiological processes in the parasitoid life. Information of neuropeptide sequences in parasitoid wasps can be useful for better understanding the phylogenetic relationships of Hymenoptera and further elucidating the physiological functions of neuropeptide signaling systems in parasitoid wasps.
Collapse
Affiliation(s)
- Juhua Chang
- College of Life Science, Yangtze University, Jingzhou, China
- Pesticide Research Institute, Yangtze University, Jingzhou, China
- * E-mail:
| | - Jianhua Zhao
- Vegetable Technology Center of Xiyang County, Xiyang, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Diesner M, Gallot A, Binz H, Gaertner C, Vitecek S, Kahnt J, Schachtner J, Jacquin-Joly E, Gadenne C. Mating-Induced Differential Peptidomics of Neuropeptides and Protein Hormones in Agrotis ipsilon Moths. J Proteome Res 2018; 17:1397-1414. [PMID: 29466015 DOI: 10.1021/acs.jproteome.7b00779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many insects, mating induces drastic changes in male and female responses to sex pheromones or host-plant odors. In the male moth Agrotis ipsilon, mating induces a transient inhibition of behavioral and neuronal responses to the female sex pheromone. As neuropeptides and peptide hormones regulate most behavioral processes, we hypothesize that they could be involved in this mating-dependent olfactory plasticity. Here we used next-generation RNA sequencing and a combination of liquid chromatography, matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and direct tissue profiling to analyze the transcriptome and peptidome of different brain compartments in virgin and mated males and females of A. ipsilon. We identified 37 transcripts encoding putative neuropeptide precursors and 54 putative bioactive neuropeptides from 23 neuropeptide precursors (70 sequences in total, 25 neuropeptide precursors) in different areas of the central nervous system including the antennal lobes, the gnathal ganglion, and the corpora cardiaca-corpora allata complex. Comparisons between virgin and mated males and females revealed tissue-specific differences in peptide composition between sexes and according to physiological state. Mated males showed postmating differences in neuropeptide occurrence, which could participate in the mating-induced olfactory plasticity.
Collapse
Affiliation(s)
- Max Diesner
- Department of Biology - Animal Physiology , Philipps University Marburg , D-35032 Marburg , Germany
| | - Aurore Gallot
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Hellena Binz
- Institute of Zoology , University of Mainz , Johann-Joachim-Becher-Weg 6 , 55128 Mainz , Germany
| | - Cyril Gaertner
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Simon Vitecek
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Jörg Kahnt
- Max-Planck-Institute für terrestrische Mikrobiologie, Marburg , Germany
| | - Joachim Schachtner
- Department of Biology - Animal Physiology , Philipps University Marburg , D-35032 Marburg , Germany
| | - Emmanuelle Jacquin-Joly
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR iEES-Paris) , INRA , Route de Saint-Cyr , 78026 Versailles Cedex , France
| | - Christophe Gadenne
- Institut de Génétique, Environnement et Protection des Plantes (UMR IGEPP) , INRA , Agrocampus Ouest, rue Le Nôtre , 49054 Angers cedex 01 , France
| |
Collapse
|
17
|
DeLaney K, Buchberger AR, Atkinson L, Gründer S, Mousley A, Li L. New techniques, applications and perspectives in neuropeptide research. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151167. [PMID: 29439063 DOI: 10.1242/jeb.151167] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptides are one of the most diverse classes of signaling molecules and have attracted great interest over the years owing to their roles in regulation of a wide range of physiological processes. However, there are unique challenges associated with neuropeptide studies stemming from the highly variable molecular sizes of the peptides, low in vivo concentrations, high degree of structural diversity and large number of isoforms. As a result, much effort has been focused on developing new techniques for studying neuropeptides, as well as novel applications directed towards learning more about these endogenous peptides. The areas of importance for neuropeptide studies include structure, localization within tissues, interaction with their receptors, including ion channels, and physiological function. Here, we discuss these aspects and the associated techniques, focusing on technologies that have demonstrated potential in advancing the field in recent years. Most identification and structural information has been gained by mass spectrometry, either alone or with confirmations from other techniques, such as nuclear magnetic resonance spectroscopy and other spectroscopic tools. While mass spectrometry and bioinformatic tools have proven to be the most powerful for large-scale analyses, they still rely heavily on complementary methods for confirmation. Localization within tissues, for example, can be probed by mass spectrometry imaging, immunohistochemistry and radioimmunoassays. Functional information has been gained primarily from behavioral studies coupled with tissue-specific assays, electrophysiology, mass spectrometry and optogenetic tools. Concerning the receptors for neuropeptides, the discovery of ion channels that are directly gated by neuropeptides opens up the possibility of developing a new generation of tools for neuroscience, which could be used to monitor neuropeptide release or to specifically change the membrane potential of neurons. It is expected that future neuropeptide research will involve the integration of complementary bioanalytical technologies and functional assays.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Amanda R Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Louise Atkinson
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Angela Mousley
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA .,School of Pharmacy, University of Wisconsin-Madison, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
18
|
Zhao XC, Xie GY, Berg BG, Schachtner J, Homberg U. Distribution of tachykinin-related peptides in the brain of the tobacco budworm Heliothis virescens. J Comp Neurol 2017; 525:3918-3934. [DOI: 10.1002/cne.24310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
- Chemosensory lab/Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Bente G. Berg
- Chemosensory lab/Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| | - Joachim Schachtner
- Department of Biology, Animal Physiology; Philipps University; Marburg 35032 Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology; Philipps University; Marburg 35032 Germany
| |
Collapse
|
19
|
The Neuropeptide Corazonin Controls Social Behavior and Caste Identity in Ants. Cell 2017; 170:748-759.e12. [PMID: 28802044 DOI: 10.1016/j.cell.2017.07.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
Abstract
Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.
Collapse
|
20
|
Cunningham CB, Badgett MJ, Meagher RB, Orlando R, Moore AJ. Ethological principles predict the neuropeptides co-opted to influence parenting. Nat Commun 2017; 8:14225. [PMID: 28145404 PMCID: PMC5296637 DOI: 10.1038/ncomms14225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023] Open
Abstract
Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting.
Collapse
Affiliation(s)
| | - Majors J. Badgett
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Allen J. Moore
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
21
|
Schmitt F, Vanselow JT, Schlosser A, Wegener C, Rössler W. Neuropeptides in the desert antCataglyphis fortis: Mass spectrometric analysis, localization, and age-related changes. J Comp Neurol 2016; 525:901-918. [DOI: 10.1002/cne.24109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Franziska Schmitt
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| |
Collapse
|