1
|
Erkal NA, Eser MG, Özgür E, Gündüz U, Eroglu I, Yücel M. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources. Arch Microbiol 2019; 201:661-671. [PMID: 30796473 DOI: 10.1007/s00203-019-01635-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of different nitrogen sources, namely, ammonium chloride and glutamate, on photoheterotrophic metabolism of Rhodobacter capsulatus grown on acetate as the carbon source. Genes that were significantly differentially expressed according to Affymetrix microarray data were categorized into Clusters of Orthologous Groups functional categories and those in acetate assimilation, hydrogen production, and photosynthetic electron transport pathways were analyzed in detail. Genes related to hydrogen production metabolism were significantly downregulated in cultures grown on ammonium chloride when compared to those grown on glutamate. In contrast, photosynthetic electron transport and acetate assimilation pathway genes were upregulated. In detail, aceA encoding isocitrate lyase, a unique enzyme of the glyoxylate cycle and ccrA encoding the rate limiting crotonyl-CoA carboxylase/reductase enzyme of ethylmalonyl-coA pathway were significantly upregulated. Our findings indicate for the first time that R. capsulatus can operate both glyoxylate and ethylmalonyl-coA cycles for acetate assimilation.
Collapse
Affiliation(s)
- Nilüfer Afsar Erkal
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
| | | | - Ebru Özgür
- Mikro Biyositemler Inc, 06530, Ankara, Turkey
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Inci Eroglu
- Department of Chemical Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Meral Yücel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
2
|
Moure VR, Siöberg CLB, Valdameri G, Nji E, Oliveira MAS, Gerdhardt ECM, Pedrosa FO, Mitchell DA, Seefeldt LC, Huergo LF, Högbom M, Nordlund S, Souza EM. The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense. FEBS J 2019; 286:1214-1229. [PMID: 30633437 DOI: 10.1111/febs.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/04/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
The ammonium-dependent posttranslational regulation of nitrogenase activity in Azospirillum brasilense requires dinitrogenase reductase ADP-ribosyl transferase (DraT) and dinitrogenase reductase ADP-glycohydrolase (DraG). These enzymes are reciprocally regulated by interaction with the PII proteins, GlnB and GlnZ. In this study, purified ADP-ribosylated Fe-protein was used as substrate to study the mechanism involved in the regulation of A. brasilense DraG in vitro. The data show that DraG is partially inhibited by GlnZ and that DraG inhibition is further enhanced by the simultaneous presence of GlnZ and AmtB. These results are the first to demonstrate experimentally that DraG inactivation requires the formation of a ternary DraG-GlnZ-AmtB complex in vitro. Previous structural data have revealed that when the DraG-GlnZ complex associates with AmtB, the flexible T-loops of the trimeric GlnZ bind to AmtB and become rigid; these molecular events stabilize the DraG-GlnZ complex, resulting in DraG inactivation. To determine whether restraining the flexibility of the GlnZ T-loops is a limiting factor in DraG inhibition, we used a GlnZ variant that carries a partial deletion of the T-loop (GlnZΔ42-54). However, although the GlnZΔ42-54 variant was more effective in inhibiting DraG in vitro, it bound to DraG with a slightly lower affinity than does wild-type GlnZ and was not competent to completely inhibit DraG activity either in vitro or in vivo. We, therefore, conclude that the formation of a ternary complex between DraG-GlnZ-AmtB is necessary for the inactivation of DraG.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Catrine L B Siöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Glaucio Valdameri
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Marco Aurelio S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Edileusa C M Gerdhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - David A Mitchell
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,Setor Litoral, Universidade Federal do Paraná, Matinhos, Brazil
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Akentieva N. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate. World J Microbiol Biotechnol 2018; 34:184. [PMID: 30488133 DOI: 10.1007/s11274-018-2564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.
Collapse
Affiliation(s)
- Natalia Akentieva
- Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Street Academician Semenov, 1., Chernogolovka, 142432, Moscow Region, Russia.
| |
Collapse
|
4
|
Farmer RM, Tabita FR. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2015; 161:2184-91. [PMID: 26306848 PMCID: PMC4806589 DOI: 10.1099/mic.0.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase.
Collapse
Affiliation(s)
- Ryan M Farmer
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
5
|
Munk AC, Copeland A, Lucas S, Lapidus A, Del Rio TG, Barry K, Detter JC, Hammon N, Israni S, Pitluck S, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Kyrpides NC, Mavromatis K, Richardson P, Rohde M, Göker M, Klenk HP, Zhang Y, Roberts GP, Reslewic S, Schwartz DC. Complete genome sequence of Rhodospirillum rubrum type strain (S1). Stand Genomic Sci 2011; 4:293-302. [PMID: 21886856 PMCID: PMC3156396 DOI: 10.4056/sigs.1804360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.
Collapse
|
6
|
Selao TT, Branca R, Chae PS, Lehtiö J, Gellman SH, Rasmussen SG, Nordlund S, Norén A. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum. J Proteome Res 2011; 10:2703-14. [PMID: 21443180 PMCID: PMC3148094 DOI: 10.1021/pr100838x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the use of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially expressed proteins, such as subunits of the succinate dehydrogenase complex and other TCA cycle enzymes that are usually found in the cytosol, thus hinting at a possible association to the membrane in response to nitrogen deficiency. We propose a redox sensing mechanism that can influence the membrane subproteome in response to nitrogen availability.
Collapse
Affiliation(s)
- Tiago Toscano Selao
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rui Branca
- Science for Life Laboratory, Stockholm and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pil Seok Chae
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Janne Lehtiö
- Science for Life Laboratory, Stockholm and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Søren G.F. Rasmussen
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Sandh G, Ran L, Xu L, Sundqvist G, Bulone V, Bergman B. Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum
IMS101 under different nitrogen regimes. Proteomics 2011; 11:406-19. [DOI: 10.1002/pmic.201000382] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/04/2010] [Accepted: 11/08/2010] [Indexed: 11/06/2022]
|
8
|
Li X, Liu T, Wu Y, Zhao G, Zhou Z. Derepressive effect of NH4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides. Biotechnol Bioeng 2010; 106:564-72. [PMID: 20340141 DOI: 10.1002/bit.22722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purple non-sulfur (PNS) bacteria produce hydrogen by photofermentation of organic acids in wastewater. However, NH(4)(+) in wastewater may inhibit hydrogen synthesis by repressing the expression and activity of nitrogenase, the enzyme catalyzing hydrogen production in PNS bacteria. In this study, the Rhodobacter sphaeroides 6016 glnA gene encoding glutamine synthetase (GS) was knocked out by homologous recombination, and the effects on hydrogen production and nitrogenase activity were examined. Using 3 mM glutamine as the nitrogen source, hydrogen production (1,245-1,588 mL hydrogen/L culture) and nitrogenase activity were detected in the mutant in the presence of relatively high NH(4)(+) concentrations (15-40 mM), whereas neither was detected in the wild-type strain under the same conditions. Further analysis indicated that high NH(4)(+) concentrations greatly inhibited the expression of nifA and nitrogenase gene in the wild-type strain but not in the glnA1(-) mutant. These observations suggest that GS is essential to NH(4)(+) repression of nitrogenase and that deletion of glnA1 results in the complete derepression of nitrogenase by preventing NH(4)(+) assimilation in vivo, thus relieving the inhibition of nifA and nitrogenase gene expression. Knocking out glnA1 therefore provides an efficient approach to removing the inhibitory effects of ammonium ions in R. sphaeroides and possibly in other hydrogen-producing PNS bacteria.
Collapse
Affiliation(s)
- Xinfeng Li
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | |
Collapse
|
9
|
Teixeira PF, Selao TT, Henriksson V, Wang H, Norén A, Nordlund S. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome. Res Microbiol 2010; 161:651-9. [PMID: 20600859 DOI: 10.1016/j.resmic.2010.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/02/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
2-Oxoglutarate plays a central role as a signal in the regulation of nitrogen metabolism in the phototrophic diazotroph Rhodospirillum rubrum. In order to further study the role of this metabolite, we have constructed an R. rubrum strain that has the capacity to grow on 2-oxoglutarate as sole carbon source, in contrast to wild-type R. rubrum. This strain has the same growth characteristics as wild-type with malate as carbon source, but showed clear metabolic differences when 2-oxoglutarate was used. Among other things, the regulation of nitrogen metabolism is altered, which can be related to different modification profiles of the regulatory PII proteins.
Collapse
Affiliation(s)
- Pedro Filipe Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
Mansour S, Bailly J, Delettre J, Bonnarme P. A proteomic and transcriptomic view of amino acids catabolism in the yeastYarrowia lipolytica. Proteomics 2009; 9:4714-25. [DOI: 10.1002/pmic.200900161] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Mastroleo F, Leroy B, Van Houdt R, s’ Heeren C, Mergeay M, Hendrickx L, Wattiez R. Shotgun Proteome Analysis of Rhodospirillum rubrum S1H: Integrating Data from Gel-Free and Gel-Based Peptides Fractionation Methods. J Proteome Res 2009; 8:2530-41. [DOI: 10.1021/pr900007d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felice Mastroleo
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Rob Van Houdt
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Catherine s’ Heeren
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Max Mergeay
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Larissa Hendrickx
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Protein Biochemistry, University of Mons, Mons, Belgium, and Expert group Molecular and Cellular Biology, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|