1
|
Protocol for Increasing the Sensitivity of MS-Based Protein Detection in Human Chorionic Villi. Curr Issues Mol Biol 2022; 44:2069-2088. [PMID: 35678669 PMCID: PMC9164042 DOI: 10.3390/cimb44050140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
An important step in the proteomic analysis of missing proteins is the use of a wide range of tissues, optimal extraction, and the processing of protein material in order to ensure the highest sensitivity in downstream protein detection. This work describes a purification protocol for identifying low-abundance proteins in human chorionic villi using the proposed “1DE-gel concentration” method. This involves the removal of SDS in a short electrophoresis run in a stacking gel without protein separation. Following the in-gel digestion of the obtained holistic single protein band, we used the peptide mixture for further LC–MS/MS analysis. Statistically significant results were derived from six datasets, containing three treatments, each from two tissue sources (elective or missed abortions). The 1DE-gel concentration increased the coverage of the chorionic villus proteome. Our approach allowed the identification of 15 low-abundance proteins, of which some had not been previously detected via the mass spectrometry of trophoblasts. In the post hoc data analysis, we found a dubious or uncertain protein (PSG7) encoded on human chromosome 19 according to neXtProt. A proteomic sample preparation workflow with the 1DE-gel concentration can be used as a prospective tool for uncovering the low-abundance part of the human proteome.
Collapse
|
2
|
Naryzhny S. Towards the Full Realization of 2DE Power. Proteomes 2016; 4:proteomes4040033. [PMID: 28248243 PMCID: PMC5260966 DOI: 10.3390/proteomes4040033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Here, approaches that allow disclosure of the information hidden inside and outside of two-dimensional gel electrophoresis (2DE) are described. Experimental identification methods, such as mass spectrometry of high resolution and sensitivity (MALDI-TOF MS and ESI LC-MS/MS) and immunodetection (Western and Far-Western) in combination with bioinformatics (collection of all information about proteoforms), move 2DE to the next level of power. The integration of these technologies will promote 2DE as a powerful methodology of proteomics technology.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia.
- B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Leningrad region, Gatchina 188300, Russia.
| |
Collapse
|
3
|
Depamede SN. Proteomic Analysis of a 14.2 kDa Protein Isolated from Bali Cattle(Bos Sondaicus/Javanicus)Saliva Using Single Dimension Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis and Matrix-Assisted Laser Desorption Ionization Time-of-Flight Tandem Mass Spectrometer. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2013.e59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Petushkova NA, Kuznetsova GP, Larina OV, Kisrieva YS, Samenkova NF, Trifonova OP, Miroshnichenko YV, Zolotarev KV, Karuzina II, Ipatova OM, Lisitsa AV. One-dimensional proteomic profiling of Danio rerio embryo vitellogenin to estimate quantum dot toxicity. Proteome Sci 2015; 13:17. [PMID: 25964724 PMCID: PMC4426544 DOI: 10.1186/s12953-015-0072-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vitellogenin (Vtg) is the major egg yolk protein (YP) in most oviparous species and may be useful as an indicator in ecotoxicological testing at the biochemical level. In this study, we obtained detailed information about the Vtgs of Danio rerio embryos by cutting SDS-PAGE gel lanes into thin slices, and analyzing them slice-by-slice with (MALDI-TOF) mass spectrometry. RESULTS We conducted three proteomic analyses, comparing embryonic Danio rerio Vtg cleavage products after exposure for 48 h to CdSecore/ZnSshell quantum dots (QDs), after exposure to a mixture of the components used for quantum dot synthesis (MCS-QDs), and in untreated embryos. The Vtg mass spectrometric profiles of the QDs-treated embryos differed from those of the unexposed or MCS-QDs-treated embryos. CONCLUSION This study demonstrates the possible utility of Vtg profiling in D. rerio embryos as a sensitive diagnostic tool to estimate nanoparticle toxicity.
Collapse
Affiliation(s)
- Natalia A Petushkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
- />Postgen Tech LLC, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Galina P Kuznetsova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olesya V Larina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Yulia S Kisrieva
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Natalia F Samenkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Oxana P Trifonova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | | | - Konstantin V Zolotarev
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Irina I Karuzina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olga M Ipatova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Andrey V Lisitsa
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| |
Collapse
|
5
|
Shrivas K, Mindaye ST, Getie-Kebtie M, Alterman MA. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450. Toxicol Appl Pharmacol 2013; 267:125-36. [DOI: 10.1016/j.taap.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/26/2022]
|
6
|
Zgoda VG, Kopylov AT, Tikhonova OV, Moisa AA, Pyndyk NV, Farafonova TE, Novikova SE, Lisitsa AV, Ponomarenko EA, Poverennaya EV, Radko SP, Khmeleva SA, Kurbatov LK, Filimonov AD, Bogolyubova NA, Ilgisonis EV, Chernobrovkin AL, Ivanov AS, Medvedev AE, Mezentsev YV, Moshkovskii SA, Naryzhny SN, Ilina EN, Kostrjukova ES, Alexeev DG, Tyakht AV, Govorun VM, Archakov AI. Chromosome 18 transcriptome profiling and targeted proteome mapping in depleted plasma, liver tissue and HepG2 cells. J Proteome Res 2012; 12:123-34. [PMID: 23256950 DOI: 10.1021/pr300821n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples. The targeted analysis of HepG2 cells was carried out for 49 proteins; 41 of them were successfully registered using ordinary SRM and 5 additional proteins were registered using a combination of irreversible binding of proteins on CN-Br Sepharose 4B with SRM. Transcriptome profiling of HepG2 cells performed by RNAseq and RT-PCR has shown a significant correlation (r = 0.78) for 42 gene transcripts. A pilot affinity-based interactome analysis was performed for cytochrome b5 using analytical and preparative optical biosensor fishing followed by MS analysis of the fished proteins. All of the data on the proteome complement of the Chr 18 have been integrated into our gene-centric knowledgebase ( www.kb18.ru ).
Collapse
Affiliation(s)
- Victor G Zgoda
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sun L, Zhang Y, Tao D, Zhu G, Zhao Q, Wu Q, Liang Z, Yang L, Zhang L, Zhang Y. SDS-PAGE-free protocol for comprehensive identification of cytochrome P450 enzymes and uridine diphosphoglucuronosyl transferases in human liver microsomes. Proteomics 2012; 12:3464-9. [DOI: 10.1002/pmic.201200260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Liangliang Sun
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Yanyan Zhang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Dingyin Tao
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Guijie Zhu
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Qun Zhao
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
- Graduate School of Chinese Academy of Sciences; Beijing China
| | - Qi Wu
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
- Graduate School of Chinese Academy of Sciences; Beijing China
| | - Zhen Liang
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Lihua Zhang
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| | - Yukui Zhang
- Laboratory of High Efficient Separation and High Sensitive Characterization of Biomolecules, Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian China
| |
Collapse
|
8
|
Petushkova NA, Lisitsa AV. Producing a one-dimensional proteomic map for human liver cytochromes p450. Methods Mol Biol 2012; 909:63-82. [PMID: 22903709 DOI: 10.1007/978-1-61779-959-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this chapter we explore the inducible cytochrome P450 (CYP) forms as an example of membrane proteins analysis that relies on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) fractionation with subsequent mass spectrometric (MS) identification. The approach involves cutting an SDS-PAGE gel lane into thin slices and identifying proteins in each slice by MS with the aim of obtaining detailed information on proteins of interest. A one-dimensional proteomic map showing the distribution of selected CYP isoforms across 40 slices was constructed using mass spectra obtained from each slice. Our protocol proved to be efficient enough to obtain a comprehensive profile of drug-metabolizing enzymes in the human liver. In addition to human tissues, the approach described should be applicable to the characterization of membrane proteins in other eukaryotic species.
Collapse
Affiliation(s)
- Natalia A Petushkova
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | | |
Collapse
|
9
|
Chernobrovkin AL, Trifonova OP, Petushkova NA, Ponomarenko EA, Lisitsa AV. [Selection of the peptide mass tolerance value for the protein identification with peptide mass fingerprinting]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:132-6. [PMID: 21460888 DOI: 10.1134/s1068162011010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peptide mass-fingerprint is widely used for protein identification while studying proteome with the use of 1D or 2D electrophoresis. Peptide mass tolerance indicates the fit of theoretical peptide mass with the experimental measurements, and choice of this parameter sufficiently influences the protein identification. The role of peptide mass tolerance was estimated by counting the number of identified proteins for the reference set of mass-spectra. The reference set of 400 Ultraflex (Bruker Daltonics, Germany) mass-spectra was obtained for the slices of 1D gel of liver microsomes. Using Mascot server for protein identification, the peptide mass tolerance value was varied in the range from 0.02 to 0.40 Da with a step 0.01 Da. Depending on the tolerance the number of identified protein changes up to 10 times. Maximal number of identified proteins was reported for the tolerance value of 0.15 Da (120 ppm), which is 1.5 - 2 times higher than the recommended values for such type of mass-spectrometers. The software program PMFScan was developed to obtain the dependence of number of identified proteins of the tolerance values.
Collapse
|
10
|
Chen X, Karnovsky A, Sans MD, Andrews PC, Williams JA. Molecular characterization of the endoplasmic reticulum: insights from proteomic studies. Proteomics 2010; 10:4040-52. [PMID: 21080494 DOI: 10.1002/pmic.201000234] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle responsible for the synthesis, processing and trafficking of a wide variety of proteins essential for cell growth and survival. Therefore, comprehensive characterization of the ER proteome is of great importance to the understanding of its functions and has been actively pursued in the past decade by scientists in the proteomics field. This review summarizes major proteomic studies published in the past decade that focused on the ER proteome. We evaluate the data sets obtained from two different organs, liver and pancreas each of which contains a primary cell type (hepatocyte and acinar cell) with specialized functions. We also discuss how the nature of the proteins uncovered is related to the methods of organelle purification, organelle purity and the techniques used for protein separation prior to MS. In addition, this review also puts emphasis on the biological insights gained from these studies regarding the molecular functions of the ER including protein synthesis and translocation, protein folding and quality control, ER-associated degradation and ER stress, ER export and membrane trafficking, calcium homeostasis and detoxification and drug metabolism.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|