1
|
Fang Y, Gong W, Yang L. Fe ion coordination direction and refresh mechanism in off-line αKG-dependent hydroxylase. Int J Biol Macromol 2025; 305:140942. [PMID: 39954892 DOI: 10.1016/j.ijbiomac.2025.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
In non-heme iron/α-ketoglutarate (αKG)-dependent enzyme which is one of the main forms of iron present in living organisms, αKG can bind in two different modes, "in-line" and "off-line", depending on the orientation of its C-1 carboxyl. A classical mechanism involving a Fe(IV) = O intermediate has been proposed in in-line enzymes. However, no reasonable catalytic mechanism had been proposed for off-line αKG-dependent enzyme because αKG in this binding mode hinders the activated oxygen on Fe ion from approaching the substrate. In this study, we find the fixed coordination direction of Fe ion and propose a potential catalytic mechanism involving Fe ion release and refresh in non-heme αKG enzymes based on reaction intermediate crystal structures and enzyme assay of UbPH, an off-line αKG dependent trans-L-proline hydroxylase.
Collapse
Affiliation(s)
- Yijun Fang
- School of Life Sciences, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weimin Gong
- School of Life Sciences, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Lin Yang
- School of Life Sciences, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
2
|
Zheng C, Wei W, Wen J, Song W, Wu J, Wang R, Yin D, Chen X, Gao C, Liu J, Liu L. Rational Design of the Spatial Effect in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase Reverses the Regioselectivity of C(sp 3)-H Bond Hydroxylation in Aliphatic Amino Acids. Angew Chem Int Ed Engl 2024; 63:e202406060. [PMID: 38789390 DOI: 10.1002/anie.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Crystal structure analysis, molecular dynamics simulations, and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on these results, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5 a) was reversed from the γ site (1 : 12) to the δ site (>99 : 1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.
Collapse
Affiliation(s)
- Chenni Zheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ran Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Wang J, Wang Y, Wu Q, Zhang Y. Multidimensional engineering of Escherichia coli for efficient biosynthesis of cis-3-hydroxypipecolic acid. BIORESOURCE TECHNOLOGY 2023; 382:129173. [PMID: 37187331 DOI: 10.1016/j.biortech.2023.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Cis-3-hydroxypipecolic acid (cis-3-HyPip) is the crucial part of many alkaloids and drugs. However, its bio-based industrial production remains challenging. Here, lysine cyclodeaminase from Streptomyces malaysiensis (SmLCD) and pipecolic acid hydroxylase from Streptomyces sp. L-49973 (StGetF) were screened to achieve the conversion of L-lysine to cis-3-HyPip. Considering the high-cost of cofactors, NAD(P)H oxidase from Lactobacillus sanfranciscensis (LsNox) was further overexpressed in chassis strain Escherichia coli W3110 ΔsucCD (α-ketoglutarate-producing strain) to construct the NAD+ regeneration system, thus realizing the bioconversion of cis-3-HyPip from low-cost substrate L-lysine without NAD+ and α-ketoglutarate addition. To further accelerate the transmission efficiency of cis-3-HyPip biosynthetic pathway, multiple-enzyme expression optimization and transporter dynamic regulation via promoter engineering were conducted. Through fermentation optimization, the final engineered strain HP-13 generated 78.4 g/L cis-3-HyPip with 78.9% conversion in a 5-L fermenter, representing the highest production level achieved so far. These strategies described herein show promising potentials for large-scale production of cis-3-HyPip.
Collapse
Affiliation(s)
- Jiaping Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yaqiong Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Qin Wu
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yimin Zhang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
4
|
Zwick CR, Renata H. Overview of Amino Acid Modifications by Iron- and α-Ketoglutarate-Dependent Enzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Guan J, Lu Y, Dai Z, Zhao S, Xu Y, Nie Y. R97 at "Handlebar" Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid. Molecules 2023; 28:molecules28041854. [PMID: 36838840 PMCID: PMC9968057 DOI: 10.3390/molecules28041854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Pipecolic acid (Pip) and its derivative hydroxypipecolic acids, such as (2S,3R)-3-hydroxypipecolic acid (cis-3-L-HyPip), are components of many natural and synthetic bioactive molecules. Fe(II)/α-ketoglutaric acid (Fe(II)/2-OG)-dependent dioxygenases can catalyze the hydroxylation of pipecolic acid. However, the available enzymes with desired activity and selectivity are limited. Herein, we compare the possible candidates in the Fe(II)/2-OG-dependent dioxygenase family, and cis-P3H is selected for potentially catalyzing selective hydroxylation of L-Pip. cis-P3H was further engineered to increase its catalytic efficiency toward L-Pip. By analyzing the structural confirmation and residue composition in substrate-binding pocket, a "handlebar" mode of molecular interactions is proposed. Using molecular docking, virtual mutation analysis, and dynamic simulations, R97, E112, L57, and G282 were identified as the key residues for subsequent site-directed saturation mutagenesis of cis-P3H. Consequently, the variant R97M showed an increased catalytic efficiency toward L-Pip. In this study, the kcat/Km value of the positive mutant R97M was about 1.83-fold that of the wild type. The mutation R97M would break the salt bridge between R97 and L-Pip and weaken the positive-positive interaction between R97 and R95. Therefore, the force on the amino and carboxyl groups of L-Pip was lightly balanced, allowing the molecule to be stabilized in the active pocket. These results provide a potential way of improving cis-P3H catalytic activity through rational protein engineering.
Collapse
Affiliation(s)
- Jiaojiao Guan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yilei Lu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zixuan Dai
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Songyin Zhao
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China
- Correspondence:
| |
Collapse
|
6
|
Wu L, An J, Jing X, Chen CC, Dai L, Xu Y, Liu W, Guo RT, Nie Y. Molecular Insights into the Regioselectivity of the Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Catalyzed C–H Hydroxylation of Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianhong An
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325000, China
| | - Xiaoran Jing
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, Jiangsu 223814, China
| |
Collapse
|
7
|
Shinoda S, Itakura A, Sasano H, Miyake R, Kawabata H, Asano Y. Rational Design of the Soluble Variant of l-Pipecolic Acid Hydroxylase using the α-Helix Rule and the Hydropathy Contradiction Rule. ACS OMEGA 2022; 7:29508-29516. [PMID: 36033675 PMCID: PMC9404520 DOI: 10.1021/acsomega.2c04247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The production of recombinant proteins in Escherichia coli is an important application of biotechnology. 2-Oxoglutarate-dependent l-pipecolic acid hydroxylase derived from Xenorhabdus doucetiae (XdPH) is an excellent biocatalyst that catalyzes the hydroxylation of l-pipecolic acid to produce cis-5-hydroxy-l-pipecolic acid. However, the enzyme tends to form aggregates in the E. coli expression system. Our group established two rules, namely, the "α-helix rule" and the "hydropathy contradiction rule," to select residues to be altered for improving the heterologous recombinant production of proteins, by analyzing their primary structure. We rationally designed XdPH variants that are expressed in highly soluble and active forms in the E. coli expression system using these hotspot prediction methods, and the L142R variant showed a remarkably high soluble expression level compared to the wild-type XdPH. Further mutations were introduced into the L142R gene by site-directed mutagenesis. Moreover, the I28P/L142R and C76Y/L142R double variants displayed improved soluble expression levels compared to the single variants. These variants were also more thermostable than the wild-type XdPH. To analyze the effect of the alteration on one of the hotspots, L142 was replaced with various hydrophilic and positively charged residues. The remarkable increase in soluble protein expression caused by the alterations suggests that the decrease in the hydrophobicity of the protein surface and the enhancement of the interaction between nearby residues are important factors determining the solubility of the protein. Overall, this study demonstrated the effectiveness of our protocol in identifying aggregation hotspots for recombinant protein production and in basic biochemical research.
Collapse
Affiliation(s)
- Suguru Shinoda
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Aoi Itakura
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Haruka Sasano
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Ryoma Miyake
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Hiroshi Kawabata
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
- API
Corporation, 13-4 Uchikanda
1-chome, Chiyoda-ku, Tokyo 101-0047, Japan
| | - Yasuhisa Asano
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| |
Collapse
|
8
|
β-Hydroxylation of α-amino-β-hydroxylbutanoyl-glycyluridine catalyzed by a nonheme hydroxylase ensures the maturation of caprazamycin. Commun Chem 2022; 5:87. [PMID: 36697788 PMCID: PMC9814697 DOI: 10.1038/s42004-022-00703-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/13/2022] [Indexed: 01/28/2023] Open
Abstract
Caprazamycin is a nucleoside antibiotic that inhibits phospho-N-acetylmuramyl-pentapeptide translocase (MraY). The biosynthesis of nucleoside antibiotics has been studied but is still far from completion. The present study characterized enzymes Cpz10, Cpz15, Cpz27, Mur17, Mur23 out of caprazamycin/muraymycin biosynthetic gene cluster, particularly the nonheme αKG-dependent enzyme Cpz10. Cpz15 is a β-hydroxylase converting uridine mono-phosphate to uridine 5' aldehyde, then incorporating with threonine by Mur17 (Cpz14) to form 5'-C-glycyluridine. Cpz10 hydroxylates synthetic 11 to 12 in vitro. Major product 13 derived from mutant Δcpz10 is phosphorylated by Cpz27. β-Hydroxylation of 11 by Cpz10 permits the maturation of caprazamycin, but decarboxylation of 11 by Mur23 oriented to muraymycin formation. Cpz10 recruits two iron atoms to activate dioxygen with regio-/stereo-specificity and commit electron/charge transfer, respectively. The chemo-physical interrogations should greatly advance our understanding of caprazamycin biosynthesis, which is conducive to pathway/protein engineering for developing more effective nucleoside antibiotics.
Collapse
|
9
|
Hu S, Li Y, Zhang A, Li H, Chen K, Ouyang P. Designing of an Efficient Whole-Cell Biocatalyst System for Converting L-Lysine Into Cis-3-Hydroxypipecolic Acid. Front Microbiol 2022; 13:945184. [PMID: 35832817 PMCID: PMC9271919 DOI: 10.3389/fmicb.2022.945184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Cis-3-hydroxypipecolic acid (cis-3-HyPip), a key structural component of tetrapeptide antibiotic GE81112, which has attracted substantial attention for its broad antimicrobial properties and unique ability to inhibit bacterial translation initiation. In this study, a combined strategy to increase the productivity of cis-3-HyPip was investigated. First, combinatorial optimization of the ribosomal binding site (RBS) sequence was performed to tune the gene expression translation rates of the pathway enzymes. Next, in order to reduce the addition of the co-substrate α-ketoglutarate (2-OG), the major engineering strategy was to reconstitute the tricarboxylic acid (TCA) cycle of Escherichia coli to force the metabolic flux to go through GetF catalyzed reaction for 2-OG to succinate conversion, a series of engineered strains were constructed by the deletion of the relevant genes. In addition, the metabolic flux (gltA and icd) was improved and glucose concentrations were optimized to enhance the supply and catalytic efficiency of continuous 2-OG supply powered by glucose. Finally, under optimal conditions, the cis-3-HyPip titer of the best strain catalysis reached 33 mM, which was remarkably higher than previously reported.
Collapse
|
10
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
11
|
Hu S, Yang P, Li Y, Zhang A, Chen K, Ouyang P. Biosynthesis of cis-3-hydroxypipecolic acid from L-lysine using an in vivo dual-enzyme cascade. Enzyme Microb Technol 2021; 154:109958. [PMID: 34891103 DOI: 10.1016/j.enzmictec.2021.109958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
Cis-3-Hydroxypipecolic acid (cis-3-HyPip) is an important intermediate for the synthesis of GE81112 tetrapeptides, a small family of unusual nonribosomal peptide congeners with potent inhibitory activity against prokaryotic translation initiation. In this study, we constructed a microbial cell factory that can convert L-lysine into cis-3-hydroxypipecolic acid (cis-3-HyPip). Lysine cyclodeaminase SpLCD and Fe(II)/α-ketoglutarate (2-OG)-based oxygenase GetF were co-expressed in Escherichia coli. Plasmids with different copy numbers were used to balance the expression of these two enzymes, and the cell with the most appropriate balance of this kind for carrying plasmid pET-duet-getf-splcd was obtained. After determining the temperature (30 °C), pH (7.0), cell biomass, substrate concentration, Fe2+ concentration (10 mM), L-ascorbate concentration (10 mM), and TritonX-100 concentration (0.1% w/v) that were optimal for whole-cell catalysis, the yield of cis-3-HyPip reached as high as 25 mM (3.63 g/L).
Collapse
Affiliation(s)
- Shewei Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Pengfan Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yangyang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
12
|
Qiu S, Xu SY, Li SF, Meng KM, Cheng F, Wang YJ, Zheng YG. Fluorescence-based screening for engineered aldo-keto reductase KmAKR with improved catalytic performance and extended substrate scope. Biotechnol J 2021; 16:e2100130. [PMID: 34125995 DOI: 10.1002/biot.202100130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aldo-keto reductases-catalyzed transformations of ketones to chiral alcohols have become an established biocatalytic process step in the pharmaceutical industry. Previously, we have discovered an aldo-keto reductase (AKR) from Kluyveromyces marxianus that is active to the aliphatic tert-butyl 6-substituted (5R/S)-hydroxy-3-oxohexanoates, but it is inactive to aromatic ketones. In order to acquire an excellent KmAKRmutant for ensuring the simultaneous improvement of activity-thermostability toward tert-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate ((5R)-1) and broadening the universal application prospects toward more substrates covering both aliphatic and aromatic ketones, a fluorescence-based high-throughput (HT) screening technique was established. MAIN METHODS AND MAJOR RESULTS The directed evolution of KmAKR variant M5 (KmAKR-W297H/Y296W/K29H/Y28A/T63M) produced the "best" variant M5-Q213A/T23V. It exhibited enhanced activity-thermostability toward (5R)-1, improved activity toward all 18 test substrates and strict R-stereoselectivity toward 10 substrates in comparison to M5. The enhancement of enzymatic activity and the extension of substrate scope covering aromatic ketones are proposed to be largely attributed to pushing the binding pocket of M5-Q213A/T23V to the enzyme surface, decreasing the steric hindrance at the entrance and enhancing the flexibility of loops surrounding the active center. In addition, combined with 0.94 g dry cell weight (DCW) L-1 glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration, 2.81 g DCW L-1 M5-Q213A/T23V completely converted (5R)-1 of up to 450 g L-1 at 120 g g-1 substrates/catalysts (S/C), yielding the corresponding optically pure tert-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2, > 99.5% d.e.p ) with a space-time yield (STY) of 1.08 kg L-1 day-1 . CONCLUSIONS A fluorescence-based HT screening system was developed to tailor KmAKR's activity, thermostability and substrate scope. The "best" variant M5-Q213A/T23V holds great potential application for the synthesis of aliphatic/aromatic R-configuration alcohols.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kang-Ming Meng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
13
|
Meyer F, Frey R, Ligibel M, Sager E, Schroer K, Snajdrova R, Buller R. Modulating Chemoselectivity in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase for the Oxidative Modification of a Nonproteinogenic Amino Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabian Meyer
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Raphael Frey
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathieu Ligibel
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
14
|
Zhang Z, Liu P, Su W, Zhang H, Xu W, Chu X. Metabolic engineering strategy for synthetizing trans-4-hydroxy-L-proline in microorganisms. Microb Cell Fact 2021; 20:87. [PMID: 33882914 PMCID: PMC8061225 DOI: 10.1186/s12934-021-01579-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 11/14/2022] Open
Abstract
Trans-4-hydroxy-L-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-L-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-L-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-L-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-L-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-L-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Wenqian Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| |
Collapse
|
15
|
Lu F, Chen J, Ye H, Wu H, Sha F, Huang F, Cao F, Wei P. Enzymatic hydroxylation of L-pipecolic acid by L-proline cis-4-hydroxylases and isomers separation. Biotechnol Lett 2020; 42:2607-2617. [PMID: 32914260 DOI: 10.1007/s10529-020-03002-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/06/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Establish a complete and efficient method for the preparation of cis-5-hydroxy-L-pipecolic acids (cis-5HPA), including biotransformation and isomers separation and purification. RESULTS For non-heme Fe(II)/α-KG-dependent dioxygenases, α-ketoglutarate (α-KG) has great influence on the stability of Fe(II) ions, which is also the basic of the hydroxylation reaction to the substrate. L-pipecolic acids (L-Pip) was converted to cis-5HPA by whole-cell catalysis in water, which can reduce the loss of Fe(II) ions. 120 mM L-Pip can be transformed to 93% via cell and Fe(II) ions continuous supplementation under the reaction system optimization (the molar ratio of ascorbic acid/FeSO4·7H2O and α-KG/L-Pip were 8:1 and 1:1, respectively). After the catalytic reaction, the amino protection strategy was adopted to improve the resolution of isomer products on silica gel chromatography, and the amino protected cis-5HPA was obtained with a yield of 86.7%. CONCLUSIONS We established a method which is promising to be used for cis-5HPA largescale preparation. It also provides a suitable reference for this type of enzyme-catalyzed reaction and the hydroxy pipecolic acid isomers separation.
Collapse
Affiliation(s)
- Fan Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jiao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Hai Ye
- Nanjing Heron Pharmaceutical Science and Technology Co., Ltd, Life Science and Technology Town, Jiangning District, Nanjing, 211000, People's Republic of China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Feng Sha
- School of Chemical Biology & Biotechnology, Shenzhen Graduate School, Peking University, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Fujun Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
16
|
2-Ketoglutarate-Generated In Vitro Enzymatic Biosystem Facilitates Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Mediated C-H Bond Oxidation for (2 s,3 r,4 s)-4-Hydroxyisoleucine Synthesis. Int J Mol Sci 2020; 21:ijms21155347. [PMID: 32731373 PMCID: PMC7432852 DOI: 10.3390/ijms21155347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation of l-Ile by the dioxygenase IDO with 2-KG generation from readily available l-Glu by l-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H2O2 significantly inhibited IDO activity and elevated Fe2+ concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containing l-amino acids to yield l-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentiful l-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.
Collapse
|
17
|
Hara R, Kino K. Enzymatic reactions and microorganisms producing the various isomers of hydroxyproline. Appl Microbiol Biotechnol 2020; 104:4771-4779. [PMID: 32291491 DOI: 10.1007/s00253-020-10603-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
18
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
19
|
Directed evolution of carbon–hydrogen bond activating enzymes. Curr Opin Biotechnol 2019; 60:29-38. [DOI: 10.1016/j.copbio.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
|
20
|
Czech L, Wilcken S, Czech O, Linne U, Brauner J, Smits SHJ, Galinski EA, Bremer E. Exploiting Substrate Promiscuity of Ectoine Hydroxylase for Regio- and Stereoselective Modification of Homoectoine. Front Microbiol 2019; 10:2745. [PMID: 31827466 PMCID: PMC6890836 DOI: 10.3389/fmicb.2019.02745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Extant enzymes are not only highly efficient biocatalysts for a single, or a group of chemically closely related substrates but often have retained, as a mark of their evolutionary history, a certain degree of substrate ambiguity. We have exploited the substrate ambiguity of the ectoine hydroxylase (EctD), a member of the non-heme Fe(II)-containing and 2-oxoglutarate-dependent dioxygenase superfamily, for such a task. Naturally, the EctD enzyme performs a precise regio- and stereoselective hydroxylation of the ubiquitous stress protectant and chemical chaperone ectoine (possessing a six-membered pyrimidine ring structure) to yield trans-5-hydroxyectoine. Using a synthetic ectoine derivative, homoectoine, which possesses an expanded seven-membered diazepine ring structure, we were able to selectively generate, both in vitro and in vivo, trans-5-hydroxyhomoectoine. For this transformation, we specifically used the EctD enzyme from Pseudomonas stutzeri in a whole cell biocatalyst approach, as this enzyme exhibits high catalytic efficiency not only for its natural substrate ectoine but also for homoectoine. Molecular docking approaches with the crystal structure of the Sphingopyxis alaskensis EctD protein predicted the formation of trans-5-hydroxyhomoectoine, a stereochemical configuration that we experimentally verified by nuclear-magnetic resonance spectroscopy. An Escherichia coli cell factory expressing the P. stutzeri ectD gene from a synthetic promoter imported homoectoine via the ProU and ProP compatible solute transporters, hydroxylated it, and secreted the formed trans-5-hydroxyhomoectoine, independent from all currently known mechanosensitive channels, into the growth medium from which it could be purified by high-pressure liquid chromatography.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Sarah Wilcken
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Czech
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Jarryd Brauner
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Erwin A Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
21
|
Smart TJ, Hamed RB, Claridge TDW, Schofield CJ. Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles. Bioorg Chem 2019; 94:103386. [PMID: 31706681 PMCID: PMC6958525 DOI: 10.1016/j.bioorg.2019.103386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022]
Abstract
Studies on proline hydroxylase selectivity reveals new products. Proline hydroxylases can produce dihydroxylated 5-, 6-, and 7-membered ring products. Proline hydroxylases can accept bicyclic substrates. Bicyclic products arise via bifurcation: two C-H bonds are accessible to the reactive oxidising species. The results have implications for other oxygenases, including those catalysing protein modifications. The results highlight the potential for amino acid hydroxylases in biocatalysis.
Studies on the substrate selectivity of recombinant ferrous-iron- and 2-oxoglutarate-dependent proline hydroxylases (PHs) reveal that they can catalyse the production of dihydroxylated 5-, 6-, and 7-membered ring products, and can accept bicyclic substrates. Ring-substituted substrate analogues (such hydroxylated and fluorinated prolines) are accepted in some cases. The results highlight the considerable, as yet largely untapped, potential for amino acid hydroxylases and other 2OG oxygenases in biocatalysis.
Collapse
Affiliation(s)
- Tristan J Smart
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Refaat B Hamed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
22
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
23
|
Liu C, Zhao J, Liu J, Guo X, Rao D, Liu H, Zheng P, Sun J, Ma Y. Simultaneously improving the activity and thermostability of a new proline 4-hydroxylase by loop grafting and site-directed mutagenesis. Appl Microbiol Biotechnol 2018; 103:265-277. [DOI: 10.1007/s00253-018-9410-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
|
24
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Biochemical and genetic characterization of fungal proline hydroxylase in echinocandin biosynthesis. Appl Microbiol Biotechnol 2018; 102:7877-7890. [PMID: 29987385 DOI: 10.1007/s00253-018-9179-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
An intriguing structural feature of echinocandins is the incorporation of hydroxylated amino acids. Elucidation of the machinery and the mechanism responsible for this modification is critical to generate new echinocandin derivatives with enhanced antifungal activity. In our present study, we biochemically characterized the α-ketoglutarate/Fe2+-dependent proline hydroxylase (HtyE) from two Aspergillus species, Aspergillus pachycristatus and Aspergillus aculeatus, in the respective echinocandin B and aculeacin A biosynthetic gene clusters. Our results showed that both Ap- and Aa-HtyE converted L-proline to trans-4- and trans-3-hydroxyproline, but at different ratios. Both enzymes also effectively hydroxylated C-3 of 4R-methyl-proline, L-pipecolic acid, and D-proline. Our homology modeling and site-directed mutagenesis studies identified Leu182 of Ap-HtyE as a key residue in determining the regioselectivity of Ap-HtyE. Notably, we found that the efficiency in C-3 hydroxylation of 4R-methyl-proline has no direct correlation with the ratio of trans-4-hydroxylproline to trans-3-hydroxylproline catalyzed by HtyE. Deletion of Ap-htyE abolished A. pachycristatus anti-Candida activity and the production of echinocandin B, demonstrating that HtyE is the enzyme responsible for the hydroxylation of L-proline and 4R-methyl-proline in vivo and is essential for the anti-Candida activity of echinocandin B. Our present study thus sheds light on the biochemical basis for the selective hydroxylation of L-proline and 4R-methyl-proline and reveals a new type of biocatalyst with potential for the custom production of hydroxylated proline and pipecolic acid derivatives.
Collapse
|
26
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Mattay J, Hüttel W. Pipecolic Acid Hydroxylases: A Monophyletic Clade amongcis-Selective Bacterial Proline Hydroxylases that Discriminatesl-Proline. Chembiochem 2017; 18:1523-1528. [DOI: 10.1002/cbic.201700187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Mattay
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
28
|
Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P, Herrmann J, Mondesert G, Kurz M, Schiell M, Schummer D, Toti L, Wink J, Müller R. Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity. J Am Chem Soc 2015; 137:7692-705. [DOI: 10.1021/jacs.5b01794] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
| | - Lena Keller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Armin Bauer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Alexandre Froidbise
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Peter Hammann
- R&D TSU Infectious Diseases, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Guillaume Mondesert
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Michael Kurz
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Matthias Schiell
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Dietmar Schummer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Luigi Toti
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Joachim Wink
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
29
|
Horita S, Scotti JS, Thinnes C, Mottaghi-Taromsari YS, Thalhammer A, Ge W, Aik W, Loenarz C, Schofield CJ, McDonough MA. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases. Structure 2015; 23:639-52. [PMID: 25728928 PMCID: PMC4396695 DOI: 10.1016/j.str.2015.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 01/24/2023]
Abstract
Post-translational ribosomal protein hydroxylation is catalyzed by 2-oxoglutarate (2OG) and ferrous iron dependent oxygenases, and occurs in prokaryotes and eukaryotes. OGFOD1 catalyzes trans-3 prolyl hydroxylation at Pro62 of the small ribosomal subunit protein uS12 (RPS23) and is conserved from yeasts to humans. We describe crystal structures of the human uS12 prolyl 3-hydroxylase (OGFOD1) and its homolog from Saccharomyces cerevisiae (Tpa1p): OGFOD1 in complex with the broad-spectrum 2OG oxygenase inhibitors; N-oxalylglycine (NOG) and pyridine-2,4-dicarboxylate (2,4-PDCA) to 2.1 and 2.6 Å resolution, respectively; and Tpa1p in complex with NOG, 2,4-PDCA, and 1-chloro-4-hydroxyisoquinoline-3-carbonylglycine (a more selective prolyl hydroxylase inhibitor) to 2.8, 1.9, and 1.9 Å resolution, respectively. Comparison of uS12 hydroxylase structures with those of other prolyl hydroxylases, including the human hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs), reveals differences between the prolyl 3- and prolyl 4-hydroxylase active sites, which can be exploited for developing selective inhibitors of the different subfamilies.
Collapse
Affiliation(s)
- Shoichiro Horita
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Cyrille Thinnes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Yousef S Mottaghi-Taromsari
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Armin Thalhammer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - WeiShen Aik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christoph Loenarz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|