1
|
Claesson A. Use of Structural Alerts for Reactive Metabolites in the Application SpotRM. Chem Res Toxicol 2024; 37:1231-1245. [PMID: 39088358 DOI: 10.1021/acs.chemrestox.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Reactive metabolite (RM) formation is widely accepted as playing a crucial role in causing idiosyncratic adverse drug reactions (IADRs), where the liver is most affected. An important goal of drug design is to avoid selection of drug candidates giving rise to RMs and therefore risk causing problems later on involving IADRs. The simplest, initial approach is to avoid test structures that have substructures known or strongly suspected to be associated with IADRs. However, as is evident from the many case reports of IADRs, in most cases a clear association with any (bio)chemical mechanism is lacking, which makes it hard to establish any structure-toxicity relationship. Separate studies of RM formation, in vitro and in vivo, have led to likely evidence and to establishing many structural alerts (SAs) that can be used for fast selection/deselection of planned test compounds. As a background to a discussion of the concept, 25 kinase inhibitor drugs with known problems of hepatotoxicity were probed against a set of SAs contained in the application SpotRM. A clear majority of the probed drugs show liabilities as evident by being flagged by more than one of the fairly established types of SAs. At the same time, no clear SAs were found in three drugs, which is discussed in the broader context of usefulness and selection tactics of SAs in drug design.
Collapse
Affiliation(s)
- Alf Claesson
- Awametox AB, Lilldalsvägen 17 A, SE-14461 Rönninge, Sweden
| |
Collapse
|
2
|
Li P, Gao S, Qu W, Li Y, Liu Z. Chemo-Selective Single-Cell Metabolomics Reveals the Spatiotemporal Behavior of Exogenous Pollutants During Xenopus Laevis Embryogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305401. [PMID: 38115758 PMCID: PMC10916618 DOI: 10.1002/advs.202305401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In-depth profiling of embryogenesis-associated endogenous and exogenous metabolic changes can reveal potential bio-effects resulting from human-made chemicals and underlying mechanisms. Due to the lack of potent tools for monitoring spatiotemporal distribution and bio-transformation behavior of dynamic metabolites at single-cell resolution, however, how and to what extent environmental chemicals may influence or interfere embryogenesis largely remain unclear. Herein, a zero-sample-loss micro-biopsy-based mass spectrometric platform is presented for quantitative, chemo-selective, high-coverage, and minimal-destructive profiling of development-associated cis-diol metabolites, which are critical for signal transduction and epigenome regulation, at both cellular level and tissue level of Xenopus laevis. Using this platform, three extraordinary findings that are otherwise hard to achieve are revealed: 1) there are characteristically different cis-diol metabolic signatures among oocytes, anterior and posterior part of tailbud-stage embryos; 2) halogenated cis-diols heavily accumulate at the posterior part of tailbud-stage embryos of Xenopus laevis; 3) dimethachlon, a kind of exogenous fungicide that is widely used as pesticide, may be bio-transformed and accumulated in vertebrate animals in environment. Thus, this study opens a new avenue to simultaneously monitoring intercellular and intraembryonic heterogeneity of endogenous and exogenous metabolites, providing new insights into metabolic remolding during embryogenesis and putting a warning on potential environmental risk.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Wanting Qu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
3
|
Park J, Moon SK, Lee C. N-methylsansalvamide elicits antitumor effects in colon cancer cells in vitro and in vivo by regulating proliferation, apoptosis, and metastatic capacity. Front Pharmacol 2023; 14:1146966. [PMID: 37007044 PMCID: PMC10060634 DOI: 10.3389/fphar.2023.1146966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
N-methylsansalvamide (MSSV), a cyclic pentadepsipeptide, was obtained from a strain of Fusarium solani f. radicicola. The current study investigated the anti-colorectal cancer effect of MSSV. MSSV exhibited the inhibition of the proliferation in HCT116 cells via induction of G0/G1 cell cycle arrest by downregulating CDK 2, CDK6, cyclin D, and cyclin E, and upregulating p21WAF1 and p27KIP1. Decreased phosphorylation of AKT was observed in MSSV-treated cells. Moreover, MSSV treatment induced caspase-mediated apoptosis through elevating the level of cleaved caspase 3, cleaved PARP, cleaved caspase 9, and pro-apoptotic Bax. MSSV revealed the declined MMP-9 level mediated by reduction in the binding activity of AP-1, Sp-1, and NF-κB motifs, which led to the migration and invasion of HCT116 cells. In vitro metabolism with rat liver S9 fractions was performed to examine the effect of MSSV metabolites. The metabolic process enhanced the inhibitory effect of MSSV on the HCT116 cell proliferation via decline of cyclin D1 expression and AKT phosphorylation. Finally, oral administration of MSSV inhibited the tumor growth of HCT116 xenograft mice. These results suggest that MSSV is a potential anti-tumor agent in colorectal cancer treatment.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
- *Correspondence: Sung-Kwon Moon, ; Chan Lee,
| | - Chan Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Republic of Korea
- *Correspondence: Sung-Kwon Moon, ; Chan Lee,
| |
Collapse
|
4
|
Bandookwala M, Nemani KS, Chatterjee B, Sengupta P. Reactive Metabolites: Generation and Estimation with Electrochemistry Based Analytical Strategy as an Emerging Screening Tool. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016666200131154202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Analytical scientists have constantly been in search for more efficient and
economical methods for drug simulation studies. Owing to great progress in this field, there are various
techniques available nowadays that mimic drug metabolism in the hepatic microenvironment.
The conventional in vitro and in vivo studies pose inherent methodological drawbacks due to which
alternative analytical approaches are devised for different drug metabolism experiments.
Methods:
Electrochemistry has gained attention due to its benefits over conventional metabolism
studies. Because of the protein binding nature of reactive metabolites, it is difficult to identify them
directly after formation, although the use of trapping agents aids in their successful identification.
Furthermore, various scientific reports confirmed the successful simulation of drug metabolism studies
by electrochemical cells. Electrochemical cells coupled with chromatography and mass spectrometry
made it easy for direct detection of reactive metabolites. In this review, an insight into the application
of electrochemical techniques for metabolism simulation studies has been provided. The sole
use of electrochemical cells, as well as their setups on coupling to liquid chromatography and mass
spectrometry has been discussed. The importance of metabolism prediction in early drug discovery
and development stages along with a brief overview of other conventional methods has also been
highlighted.
Conclusion:
To the best of our knowledge, this is the first article to review the electrochemistry
based strategy for the analysis of reactive metabolites. The outcome of this ‘first of its kind’ review
will significantly help the researchers in the application of electrochemistry based bioanalysis for metabolite
detection.
Collapse
Affiliation(s)
- Maria Bandookwala
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| | - Kavya Sri Nemani
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management (SPPSPTM), NMIMS University, Mumbai, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Abstract
A number of drugs have been withdrawn from the market or severely restricted in their use because of unexpected toxicities that become apparent only after the launch of new drug entities. Circumstantial evidence suggests that, in most cases, reactive metabolites are responsible for these unexpected toxicities. In this review, a general overview of the types of reactive metabolites and the consequences of their formation are presented. The current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these procedures will be discussed. Reasonable reasons for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive-metabolite assessments when nominating drug candidates for development. This will, in turn, help us to design and bring safer drugs to the market.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology; College of Pharmacy; King Saud University; Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Role of leukotrienes in N-(3,5-dichlorophenyl)succinimide (NDPS) and NDPS metabolite nephrotoxicity in male Fischer 344 rats. Toxicology 2012; 300:92-9. [PMID: 22706168 DOI: 10.1016/j.tox.2012.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 06/01/2012] [Accepted: 06/07/2012] [Indexed: 11/22/2022]
Abstract
The agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) can induce marked nephrotoxicity in rats following a single intraperitoneal (ip) administration of 0.4mmol/kg or greater. Although NDPS induces direct renal proximal tubular toxicity, a role for renal vascular effects may also be present. The purpose of this study was to examine the possible role of vasoconstrictor leukotrienes in NDPS and NDPS metabolite nephrotoxicity. Male Fischer 344 rats (4 rats/group) were administered diethylcarbamazine (DEC; 250 or 500mg/kg, ip), an inhibitor of LTA(4) synthesis, 1h before NDPS (0.4mmol/kg, ip), N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS, 0.1, 0.2, or 0.4mmol/kg, ip), or N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (2-NDHSA, 0.1mmol/kg, ip) or vehicle. In a separate set of experiments, the LTD(4) receptor antagonist LY171883 (100mg/kg, po) was administered 0.5h before and again 6h after NDHS (0.1mmol/kg, ip) or 2-NDHSA (0.1mmol/kg, ip) or vehicle. Renal function was monitored for 48h post-NDPS or NDPS metabolite. DEC markedly reduced the nephrotoxicity induced by NDPS and its metabolites, while LY171883 treatments provided only partial attenuation of NDHS and 2-NDHSA nephrotoxicity. These results suggest that leukotrienes contribute to the mechanisms of NDPS nephrotoxicity.
Collapse
|
7
|
Isolation, identification and antiviral activities of metabolites of calycosin-7-O-β-d-glucopyranoside. J Pharm Biomed Anal 2011; 56:382-9. [DOI: 10.1016/j.jpba.2011.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/15/2022]
|
8
|
Patel NN, Crincoli CM, Frederick DM, Tchao R, Harvison PJ. Effect of structural modifications on 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione-induced hepatotoxicity in Fischer 344 rats. J Appl Toxicol 2011; 32:108-17. [PMID: 21337588 DOI: 10.1002/jat.1639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/01/2010] [Accepted: 11/17/2010] [Indexed: 11/06/2022]
Abstract
Glitazones, used for type II diabetes, have been associated with liver damage in humans. A structural feature known as a 2,4-thiazolidinedione (TZD) ring may contribute to this toxicity. TZD rings are of interest since continued human exposure via the glitazones and various prototype drugs is possible. Previously, we found that 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) was hepatotoxic in rats. To evaluate the importance of structure on DCPT toxicity, we therefore studied two series of analogs. The TZD ring was replaced with: a mercaptoacetic acid group {[[[(3,5-dichlorophenyl)amino]carbonyl]thio]acetic acid, DCTA}; a methylated TZD ring [3-(3,5-dichlorophenyl)-5-methyl-2,4-thiazolidinedione, DPMT]; and isomeric thiazolidinone rings [3-(3,5-dichlorophenyl)-2- and 3-(3,5-dichlorophenyl)-4-thiazolidinone, 2-DCTD and 4-DCTD, respectively]. The following phenyl ring-modified analogs were also tested: 3-phenyl-, 3-(4-chlorophenyl)-, 3-(3,5-dimethylphenyl)- and 3-[3,5-bis(trifluoromethyl)phenyl]-2,4-thiazolidinedione (PTZD, CPTD, DMPT and DFMPT, respectively). Toxicity was assessed in male Fischer 344 rats 24 h after administration of the compounds. In the TZD series only DPMT produced liver damage, as evidenced by elevated serum alanine aminotransferase (ALT) activities at 0.6 and 1.0 mmol kg(-1) (298.6 ± 176.1 and 327.3 ± 102.9 Sigma-Frankel units ml(-1) , respectively) vs corn oil controls (36.0 ± 11.3) and morphological changes in liver sections. Among the phenyl analogs, hepatotoxicity was observed in rats administered PTZD, CPTD and DMPT; with ALT values of 1196.2 ± 133.6, 1622.5 ± 218.5 and 2071.9 ± 217.8, respectively (1.0 mmol kg(-1) doses). Morphological examination revealed severe hepatic necrosis in these animals. Our results suggest that hepatotoxicity of these compounds is critically dependent on the presence of a TZD ring and also the phenyl substituents.
Collapse
Affiliation(s)
- Niti N Patel
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
9
|
Synthesis and characterization of new imidophosphanes and phosphine oxides containing 3,3,4,4-tetramethylsuccinimidyl group. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Rankin GO, Hong SK, Anestis DK. Nephrotoxicity induced byN-(3,5-dichlorophenyl)-3-hydroxysuccinamic acid in male and female Fischer 344 rats. J Appl Toxicol 2008; 28:867-73. [DOI: 10.1002/jat.1350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Rankin GO, Anestis DK, Valentovic MA, Sun H, Triest WE. Nephrotoxicity induced by the R- and S-enantiomers of N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS) and their sulfate conjugates in male Fischer 344 rats. Toxicology 2007; 240:38-47. [PMID: 17728037 PMCID: PMC2063576 DOI: 10.1016/j.tox.2007.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/12/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
The agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) induces nephrotoxicity characterized as polyuric renal failure and mediated via metabolites arising from oxidation of the succinimide ring. Recent findings have suggested that the stereochemical nature of NDPS metabolites may be an important factor in NDPS metabolite-induced nephrotoxicity. The purpose of the present study was to determine the role of stereochemistry in the in vivo nephrotoxicity induced by R-(+)- and S-(-)-N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (R- and S-NDHS) and the in vitro nephrotoxicity induced by their enantiomeric sulfate conjugates, R-(-)- and S-(+)-N-(3,5-dichlorophenyl)-2-hydroxysuccinimide-O-sulfate (R- and S-NSC). Male Fischer 344 rats (four rats/group) were administered intraperitoneally (i.p.) an enantiomer of NDHS (0.05, 0.1 or 0.2 mmol/kg) or vehicle, and renal function monitored for 48 h. R-NDHS (0.1 or 0.2 mmol/kg) had little effect on renal function. In contrast, S-NDHS (0.1 mmol/kg) induced marked nephrotoxicity. The nephrotoxic potential of R- and S-NSC (0.5, 0.75 or 1.0mM) was determined using freshly isolated rat renal cortical cells (IRCC, 3-4 x 10(6)cells/ml). Cytotoxicity was determined by measuring the release of lactate dehydrogenase (LDH) at the end of a 1h incubation period. The LDH release observed in these studies was similar between R- and S-NSC. These results indicate that stereochemistry is an important factor for NDPS metabolite nephrotoxicity and that the role of stereochemistry, at least for NSC, occurs at extra-renal sites.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology & Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | | | | | | | | |
Collapse
|
12
|
Cui D, Rankin GO, Harvison PJ. Transamination in the metabolism of the nephrotoxicant N-(3,5-dichlorophenyl)succinimide in rats. Drug Metab Dispos 2005; 33:1765-70. [PMID: 16174804 DOI: 10.1124/dmd.105.006593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) is nephrotoxic in rats. Due to the involvement of NDPS metabolism in its mechanism of toxicity, the detailed biotransformation of 14C-NDPS in rats was previously evaluated using high-performance liquid chromatography-electrospray ionization-mass spectrometry. In the present report, we describe the identification of two novel amino metabolites of NDPS, which were present in significant amounts in rat kidney tissues. Using liquid chromatography-tandem mass spectrometry and synthetic standards, the two metabolites were identified as N-(3,5-dichlorophenyl)-2-aminosuccinamic acid (2-NDASA) and its N-acetylated derivative (N-acetyl-2-NDASA). The mechanism of formation of 2-NDASA was studied in vitro. Incubations were carried out in rat liver and kidney cytosols using the major oxidative metabolite of NDPS, N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid, as the substrate. Formation of 2-NDASA in vitro was confirmed using mass spectrometry. Inhibitors of alcohol dehydrogenase (4-methylpyrazole) and aldehyde dehydrogenase (disulfiram) reduced 2-NDASA formation by 40 to 50%. Menadione (an inhibitor of aldehyde oxidase) and quercetin (an inhibitor of carbonyl reductase) did not show any effects. (Aminooxy)acetic acid, an inhibitor of pyridoxal 5'-phosphate-containing enzymes such as aminotransferases, almost completely abolished the formation of 2-NDASA. Using liquid chromatography-mass spectrometry, the transamination mechanism was further supported by the incorporation of a 15N-amino group in 2-NDASA when 15N-glutamic acid was included in the incubation mixture. Results from these studies show that transamination is a metabolic pathway in the clearance of NDPS in rats, and that cytosolic dehydrogenases and aminotransferases may be involved in this process.
Collapse
Affiliation(s)
- Donghui Cui
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43 Street, Philadelphia, PA 19104-4495, USA
| | | | | |
Collapse
|