1
|
Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J Pers Med 2021; 11:jpm11030211. [PMID: 33809565 PMCID: PMC7999600 DOI: 10.3390/jpm11030211] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A neuroblastoma (NB) is a solid paediatric tumour arising from undifferentiated neuronal cells. Despite the recent advances in disease management and treatment, it remains one of the leading causes of childhood cancer deaths, thereby necessitating the development of new therapeutic agents and regimens. Retinoic acid (RA), a vitamin A derivative, is a promising agent that can induce differentiation in NB cells. Its isoform, 13-cis RA or isotretinoin, is used in NB therapy; however, its effectiveness is limited to treating a minimal residual disease as maintenance therapy. As such, research focuses on RA derivatives that might increase the anti-NB action or explores the potential synergy between RA and other classes of drugs, such as cellular processes mediators, epigenetic modifiers, and immune modulators. This review summarises the in vitro, in vivo, and clinical data of RA, its derivatives, and synergising compounds, thereby establishing the most promising RA derivatives and combinations of RA for further investigation.
Collapse
|
2
|
Wu M, Lou W, Lou M, Fu P, Yu XF. Integrated Analysis of Distant Metastasis-Associated Genes and Potential Drugs in Colon Adenocarcinoma. Front Oncol 2020; 10:576615. [PMID: 33194689 PMCID: PMC7645237 DOI: 10.3389/fonc.2020.576615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Most colon adenocarcinoma (COAD) patients die of distant metastasis, though there are some therapies for metastatic COAD. However, the genes exclusively expressed in metastatic COAD remain unclear. This study aims to identify prognosis-related genes associated with distant metastasis and develop therapeutic strategies for COAD patients. Methods: Transcriptomic data from The Cancer Genome Atlas (TCGA; n = 514) cohort were analyzed as a discovery dataset. Next, the data from the GEPIA database and PROGgeneV2 database were used to validate our analysis. Key genes were identified based on the differential miRNA and mRNA expression with respect to M stage. The potential drugs targeting candidate differentially expressed genes (DEGs) were also investigated. Results: A total of 127 significantly DEGs in patients with distant metastasis compared with patients without distant metastasis were identified. Then, four prognosis-related genes (LEP, DLX2, CLSTN2, and REG3A) were selected based on clustering analysis and survival analysis. Finally, three compounds targeting the candidate DEGs, including ajmaline, TTNPB, and dydrogesterone, were predicted to be potential drugs for COAD. Conclusions: This study revealed that distant metastasis in COAD is associated with a specific group of genes, and three existing drugs may suppress the distant metastasis of COAD.
Collapse
Affiliation(s)
- Miaowei Wu
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyang Lou
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Lou
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Fang Yu
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Patruno I, Thompson D, Dall'Angelo S, Windhorst AD, Vugts DJ, Poot AJ, Mody N, Zanda M. Design, Synthesis, Radiosynthesis and Biological Evaluation of Fenretinide Analogues as Anticancer and Metabolic Syndrome-Preventive Agents. ChemMedChem 2020; 15:1579-1590. [PMID: 32497314 DOI: 10.1002/cmdc.202000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Indexed: 12/31/2022]
Abstract
Fenretinide (4-HPR) is a synthetic derivative of all-trans-retinoic acid (ATRA) characterised by improved therapeutic properties and toxicological profile relative to ATRA. 4-HPR has been mostly investigated as an anti-cancer agent, but recent studies showed its promising therapeutic potential for preventing metabolic syndrome. Several biological targets are involved in 4-HPR's activity, leading to the potential use of this molecule for treating different pathologies. However, although 4-HPR displays quite well-understood multitarget promiscuity with regards to pharmacology, interpreting its precise physiological role remains challenging. In addition, despite promising results in vitro, the clinical efficacy of 4-HPR as a chemotherapeutic agent has not been satisfactory so far. Herein, we describe the preparation of a library of 4-HPR analogues, followed by the biological evaluation of their anti-cancer and anti-obesity/diabetic properties. The click-type analogue 3 b showed good capacity to reduce the amount of lipid accumulation in 3T3-L1 adipocytes during differentiation. Furthermore, it showed an IC50 of 0.53±0.8 μM in cell viability tests on breast cancer cell line MCF-7, together with a good selectivity (SI=121) over noncancerous HEK293 cells. Thus, 3 b was selected as a potential PET tracer to study retinoids in vivo, and the radiosynthesis of [18 F]3b was successfully developed. Unfortunately, the stability of [18 F]3b turned out to be insufficient to pursue imaging studies.
Collapse
Affiliation(s)
- Ilaria Patruno
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Albert D Windhorst
- Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex J Poot
- Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Matteo Zanda
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,C.N.R.-SCITEC, via Mancinelli 7, 20131, Milan, Italy.,Current address: Loughborough University School of Science, Centre for Sensing and Imaging Science Sir David Davies Building, Loughborough, LE11 3TU, UK
| |
Collapse
|
4
|
Abstract
Carotenoids are polyenes synthesized in plants and certain microorganisms and are pigments used by plants and animals in various physiological processes. Some of the over 600 known carotenoids are capable of metabolic conversion to the essential nutrient vitamin A (retinol) in higher animals. Vitamin A also gives rise to a number of other metabolites which, along with their analogs, are known as retinoids. To facilitate discussion about these important molecules, a nomenclature is required to identify specific substances. The generally accepted rules for naming these important molecules have been agreed to by various Commissions of the International Union of Pure and Applied Chemistry and International Union of Biochemistry. These naming conventions are explained along with comparisons to more systematic naming rules that apply for these organic chemicals. Identification of the carotenoids and retinoids has been advanced by their chemical syntheses, and here, both classical and modern methods for synthesis of these molecules, as well as their analogs, are described. Because of their importance in biological systems, sensitive methods for the detection and quantification of these compounds from various sources have been essential. Early analyses that relied on liquid adsorption and partition chromatography have given way to high-performance liquid chromatography (HPLC) coupled with various detection methods. The development of HPLC coupled to mass spectrometry, particularly LC/MS-MS with Multiple Reaction Monitoring, has resulted in the greatest sensitivity and specificity in these analyses.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| | - Robert W Curley
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Gnanasekaran KK, Benbrook DM, Nammalwar B, Thavathiru E, Bunce RA, Berlin KD. Synthesis and evaluation of second generation Flex-Het scaffolds against the human ovarian cancer A2780 cell line. Eur J Med Chem 2015; 96:209-17. [DOI: 10.1016/j.ejmech.2015.03.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
|
6
|
Li J, Feng ZC, Yeung FSH, Wong MRM, Oakie A, Fellows GF, Goodyer CG, Hess DA, Wang R. Aldehyde dehydrogenase 1 activity in the developing human pancreas modulates retinoic acid signalling in mediating islet differentiation and survival. Diabetologia 2014; 57:754-64. [PMID: 24374552 DOI: 10.1007/s00125-013-3147-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/29/2013] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS Aldehyde dehydrogenase 1 (ALDH1), a human stem-cell marker, is an enzyme responsible for converting retinaldehydes to retinoic acids (RAs) to modulate cell differentiation. However, data on expression levels and functional roles of ALDH1 during human fetal pancreatic development are limited. The focus of this study was to characterise ALDH1 expression patterns and to determine its functional role in islet cell differentiation. METHODS The presence of ALDH1 in the human fetal pancreas (8-22 weeks) was characterised by microarray, quantitative RT-PCR, western blotting and immunohistological approaches. Isolated human fetal islet-epithelial cell clusters were treated with ALDH1 inhibitors, retinoic acid receptor (RAR) agonists and ALDH1A1 small interfering (si)RNA. RESULTS In the developing human pancreatic cells, high ALDH1 activity frequently co-localised with key stem-cell markers as well as endocrine transcription factors. A high level of ALDH1 was expressed in newly differentiated insulin(+) cells and this decreased as development progressed. Pharmacological inhibition of ALDH1 activity in human fetal islet-epithelial cell clusters resulted in reduced endocrine cell differentiation and increased cell apoptosis, and was reversed with co-treatment of RAR/RXR agonists. Furthermore, siRNA knockdown of ALDH1A1 significantly decreased RAR expression and induced cell apoptosis via suppression of the phosphoinositide 3-kinase (PI3K) pathway and activation of caspase signals. CONCLUSIONS/INTERPRETATION Our findings indicate that ALDH1(+) cells represent a pool of endocrine precursors in the developing human pancreas and that ALDH1 activity is required during endocrine cell differentiation. Inhibition of ALDH1-mediated retinoid signalling impairs human fetal islet cell differentiation and survival.
Collapse
Affiliation(s)
- Jinming Li
- Children's Health Research Institute, Western University, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat Rev 2014; 40:739-49. [PMID: 24480385 DOI: 10.1016/j.ctrv.2014.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/23/2022]
Abstract
All-trans retinoic acid (ATRA) is the most important active metabolite of vitamin A controlling segmentation in the developing organism and the homeostasis of various tissues in the adult. ATRA as well as natural and synthetic derivatives, collectively known as retinoids, are also promising agents in the treatment and chemoprevention of different types of neoplasia including breast cancer. The major aim of the present article is to review the basic knowledge acquired on the anti-tumor activity of classic retinoids, like ATRA, in mammary tumors, focusing on the underlying cellular and molecular mechanisms and the determinants of retinoid sensitivity/resistance. In the first part, an analysis of the large number of pre-clinical studies available is provided, stressing the point that this has resulted in a limited number of clinical trials. This is followed by an overview of the knowledge acquired on the role played by the retinoid nuclear receptors in the anti-tumor responses triggered by retinoids. The body of the article emphasizes the potential of ATRA and derivatives in modulating and in being influenced by some of the most relevant cellular pathways involved in the growth and progression of breast cancer. We review the studies centering on the cross-talk between retinoids and some of the growth-factor pathways which control the homeostasis of the mammary tumor cell. In addition, we consider the cross-talk with relevant intra-cellular second messenger pathways. The information provided lays the foundation for the development of rational and retinoid-based therapeutic strategies to be used for the management of breast cancer.
Collapse
|
8
|
Synthesis of arotinoid acid and temarotene using mixed (Z)-1,2-bis(organylchalcogene)-1-alkene as precursor. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|