1
|
Sun X, Fan T, Sun G, Zhou Y, Huang Y, Zhang N, Zhao L, Zhong R, Peng Y. 2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation. Biochem Pharmacol 2022; 199:115029. [PMID: 35381210 DOI: 10.1016/j.bcp.2022.115029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Chloroethylnitrosoureas (CENUs) exert antitumor activity via producing dG-dC interstrand crosslinks (ICLs). However, tumor resistance make it necessary to find novel strategies to improve the therapeutic effect of CENUs. 2-Deoxy-D-glucose (2-DG) is a well-known glycolytic inhibitor, which can reprogram tumor energy metabolism closely related to tumor resistance. Here, we investigated the chemosensitization effect of 2-DG on l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against glioblastoma cells and the underlying mechanisms. We found that 2-DG significantly increased the inhibitory effects of BCNU on tumor cells compared with BCNU alone, while 2-DG showed no obvious enhancing effect on the BCNU-induced cytotoxicity for normal HaCaT and HA1800 cells. Proliferation, migration and invasion determinations presented the same trend as survival on tumor cells. 2-DG plus BCNU increased the energy deficiency through a more effective inhibition of glycolytic pathway. Notably, the combination of 2-DG and BCNU aggravated oxidative stress in glioblastoma cells, along with a significant decrease in glutathione (GSH) levels, and an increase in intracellular reactive oxygen species (ROS). Subsequently, we demonstrated that the combination treatment led to increased apoptosis via activating mitochondria and endoplasmic reticulum stress (ERS) related apoptosis pathways. Finally, we found that the dG-dC level was significantly increased after 2-DG pretreatment compared to BCNU alone by HPLC-ESI-MS/MS analysis. Finally, in vivo, 2-DG plus BCNU significantly suppressed tumor growth with lower side effects compared with BCNU alone in tumor-bearing mice. In summary, we proposed that 2-DG may have potential to increase the sensitivity of glioblastoma cells to BCNU by regulating glycolysis, ROS and ERS pathways in clinical setting.
Collapse
Affiliation(s)
- Xiaodong Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China.
| | - Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yue Zhou
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Xian Nong Tan Street, Beijing 100050, China.
| | - Yaxin Huang
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol 2020; 177:113988. [PMID: 32330495 DOI: 10.1016/j.bcp.2020.113988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Chloroethylnitrosoureas (CENUs) are bifunctional antitumor alkylating agents, which exert their antitumor activity through inducing the formation of dG-dC interstrand crosslinks (ICLs) within DNA double strand. However, the complex process of tumor biology enables tumor cells to escape the killing triggered by CENUs, as for instance with the detoxifying activity of O6-methylguanine DNA methyltransferase (MGMT) to accomplish DNA damage repair. Considering the fact that most tumor cells highly depend on aerobic glycolysis to provide energy for survival even in the presence of oxygen (Warburg effect), inhibition of aerobic glycolysis may be an attractive strategy to overcome the resistance and improve the chemotherapeutic effects of CENUs. Especially, 3-bromopyruvate (3-BrPA), a small molecule alkylating agent, has been emerged as an effective glycolytic inhibitor (energy blocker) in cancer treatment. In view of its tumor specificity and inhibition on cellular multiple targets, it is likely to reduce the chemoresistance when chemotherapeutic drugs are combined with 3-BrPA. In this study, we investigated the effects of 3-BrPA on the chemosensitivity of two human hepatocellular carcinoma (HCC) cell lines to the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the underlying molecular mechanism. The sensitivity of SMMC-7721 and HepG2 cells to BCNU was significantly increased by 2 h pretreatment with micromolar dosage of 3-BrPA. Moreover, 3-BrPA decreased the cellular ATP and GSH levels, and extracellular lactate excreted by tumor cells, and the effects were more effective when 3-BrPA was combined with BCNU. Cellular hexokinase-II (HK-II) activity was also reduced after exposure to the treatment of 3-BrPA plus BCNU. Based on the above results, the effects of 3-BrPA on the formation of dG-dC ICLs induced by BCNU was investigated by stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results indicated that BCNU produced higher levels of dG-dC ICLs in SMMC-7721 and HepG2 cells pretreated with 3-BrPA compared to that without 3-BrPA pretreatment. Notably, in MGMT-deficient HepG2 cells, the levels of dG-dC ICLs were significantly higher than MGMT-proficient SMMC-7721 cells. In general, these findings revealed that 3-BrPA, as an effective glycolytic inhibitor, may be considered as a potential clinical chemosensitizer to optimize the therapeutic index of CENUs.
Collapse
Affiliation(s)
- Xiaodong Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yaxin Huang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yuxing Hao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaoyu Tang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Penketh PG, Shyam K, Baumann RP, Zhu R, Ishiguro K, Sartorelli AC, Ratner ES. When alcohol is the answer: Trapping, identifying and quantifying simple alkylating species in aqueous environments. Anal Biochem 2016; 508:34-7. [PMID: 27188264 DOI: 10.1016/j.ab.2016.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/17/2022]
Abstract
Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties.
Collapse
Affiliation(s)
- Philip G Penketh
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA.
| | - Krishnamurthy Shyam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Raymond P Baumann
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Rui Zhu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Kimiko Ishiguro
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | - Alan C Sartorelli
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Elena S Ratner
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| |
Collapse
|
4
|
Shyam K, Penketh PG, Baumann RP, Finch RA, Zhu R, Zhu YL, Sartorelli AC. Antitumor sulfonylhydrazines: design, structure-activity relationships, resistance mechanisms, and strategies for improving therapeutic utility. J Med Chem 2015; 58:3639-71. [PMID: 25612194 DOI: 10.1021/jm501459c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,2-Bis(sulfonyl)-1-alkylhydrazines (BSHs) were conceived as more specific DNA guanine O-6 methylating and chloroethylating agents lacking many of the undesirable toxicophores contained in antitumor nitrosoureas. O(6)-Alkylguanine-DNA alkyltransferase (MGMT) is the sole repair protein for O(6)-alkylguanine lesions in DNA and has been reported to be absent in 5-20% of most tumor types. Many BSHs exhibit highly selective cytotoxicity toward cells deficient in MGMT activity. The development of clinically useful MGMT assays should permit the identification of tumors with this vulnerability and allow for the preselection of patient subpopulations with a high probability of responding. The BSH system is highly versatile, permitting the synthesis of many prodrug types with the ability to incorporate an additional level of tumor-targeting due to preferential activation by tumor cells. Furthermore, it may be possible to expand the spectrum of activity of these agents to include tumors with MGMT activity by combining them with tumor-targeted MGMT inhibitors.
Collapse
Affiliation(s)
- Krishnamurthy Shyam
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Philip G Penketh
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Raymond P Baumann
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Rick A Finch
- ‡Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, 650 Cool Water Drive, Bastrop, Texas 78602, United States
| | - Rui Zhu
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Yong-Lian Zhu
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| | - Alan C Sartorelli
- †Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|