1
|
Hu T, Wu J, Fu S, Li H, Gao Z. Impact of tyrosine amination on the aggregation and neurotoxicity of amyloid-β. Int J Biol Macromol 2025; 306:141700. [PMID: 40043970 DOI: 10.1016/j.ijbiomac.2025.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
The tyrosine residue in amyloid-β (Aβ) is susceptible to attack by various reactive nitrogen intermediates, leading to the formation of 3-nitrotyrosine (3-NT), a post-translational modification associated with the pathophysiology of Alzheimer's disease (AD). Although considered a "dead-end" product, emerging evidence suggests that 3-NT can be reduced to 3-aminotyrosine (3-AT) in vivo. This study aims to validate the amination of Aβ tyrosine under physiological conditions and systematically investigate its impact on the aggregation and neurotoxicity of Aβ42. Our investigations reveal that tyrosine amination mitigates the highly ordered β-structure content of Aβ42, thereby modulating its aggregation pathway, which is primarily dominated by the multi-step secondary nucleation. Aminotyrosine fibrils exhibit enhanced fragmentation, increasing fibril elongation rate, and insoluble aggregate production. Concurrently, tyrosine amination attenuates the neurotoxicity of Aβ42 by reducing intracellular reactive oxygen species (ROS) production and mitigating cell membrane disruption. Tyrosine amination substantially alters the aggregation and physiological properties of Aβ42. Nitration of Aβ42 and subsequent conversion to tyrosine-aminated Aβ42 may represent an intrinsic defensive response against AD under nitrative stress.
Collapse
Affiliation(s)
- Ting Hu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jinming Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Faculty of Medicine, Lund University, Sweden
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan, 430074, PR China, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Wang Z, Wei J, Zhang X, Ji H, Fu S, Gao Z, Li H. Nitration of Tyr37 alters the aggregation pathway of hIAPP and enhances its cytotoxicity. Int J Biol Macromol 2025; 286:138367. [PMID: 39643176 DOI: 10.1016/j.ijbiomac.2024.138367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The amyloid aggregation of hIAPP and the increased level of oxidative stress are closely related to the occurrence and development of type 2 diabetes (T2D). Protein tyrosine nitration is a common post-translational modification under oxidative stress conditions. We previously found that tyrosine nitrated hIAPP (3-NT-hIAPP) has higher cytotoxicity than wild type hIAPP. In order to further elucidate the mechanism by which tyrosine nitration enhances the toxicity of hIAPP, we systematically studied the effect of tyrosine nitration on hIAPP aggregation and its impact on INS-1 cells. Collective experimental data from ThT, RLS, DLS, zeta potentials, Bis-ANS, 1H NMR, TEM, dye leakage and hemolysis confirmed that tyrosine nitration accelerates hIAPP aggregation, consistent with tyrosine nitration reducing hIAPP zeta potential, but 3-NT-hIAPP mainly undergoes an off-pathway aggregation to form amorphous aggregates, even in the presence of POPC/POPG LUVs. Further, our results confirmed that the most toxic species are the small amorphous aggregates formed by 3-NT-hIAPP, which is more stable and toxic than hIAPP oligomers. Collectively, these data suggest that tyrosine nitration can increase cytotoxicity of hIAPP by modulating its amyloidogenicity. This study provides new support for the fact that oxidative stress promotes the development of T2D from the view of nitrative stress.
Collapse
Affiliation(s)
- Zhilong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Jingjing Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Haoran Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
3
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Zhang Q, Liu Y, Wu J, Zeng L, Wei J, Fu S, Ye H, Li H, Gao Z. Structure and mechanism behind the inhibitory effect of water soluble metalloporphyrins on Aβ1-42 aggregation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01434j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the exact molecular mechanism of the pathogenesis of Alzheimer’s disease (AD) is still unclear, compounds that can inhibit the aggregation of amyloid-β peptide (Aβ1-42) or scavenge the highly toxic...
Collapse
|
5
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
6
|
Zhao J, Shi Q, Zheng Y, Liu Q, He Z, Gao Z, Liu Q. Insights Into the Mechanism of Tyrosine Nitration in Preventing β-Amyloid Aggregation in Alzheimer's Disease. Front Mol Neurosci 2021; 14:619836. [PMID: 33658911 PMCID: PMC7917295 DOI: 10.3389/fnmol.2021.619836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Nitration of tyrosine at the tenth residue (Tyr10) in amyloid-β (Aβ) has been reported to reduce its aggregation and neurotoxicity in our previous studies. However, the exact mechanism remains unclear. Here, we used Aβ1-42 peptide with differently modified forms at Tyr10 to investigate the molecular mechanism to fill this gap. By using immunofluorescent assay, we confirmed that nitrated Aβ was found in the cortex of 10-month-old female triple transgenic mice of Alzheimer's disease (AD). And then, we used the surface-enhanced Raman scattering (SERS) method and circular dichroism (CD) to demonstrate that the modification and mutation of Tyr10 in Aβ have little impact on conformational changes. Then, with the aids of fluorescence assays of thioflavin T and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid, transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS), we found that adding a large group to the phenolic ring of Tyr10 of Aβ could not inhibit Aβ fibrilization and aggregation. Nitration of Aβ reduces its aggregation mainly because it could induce the deprotonation of the phenolic hydroxyl group of Tyr10 of Aβ at physiological pH. We proposed that the negatively charged Tyr10 caused by nitration at physiological pH could interact with the salt bridge between Glu11 and His6 or His13 and block the kink around Tyr10, thereby preventing Aβ fibrilization and aggregation. These findings provide us new insights into the relationship between Tyr10 nitration and Aβ aggregation, which would help to further understand that keeping the balance of nitric oxide in vivo is important for preventing AD.
Collapse
Affiliation(s)
- Jie Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Qihui Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ye Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiulian Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
7
|
Li J, Wei J, Gao Z, Yin G, Li H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics 2021; 13:6134099. [PMID: 33576808 DOI: 10.1093/mtomcs/mfab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
Understanding the toxicological properties of MnIII-porphyrins (MnTPPS, MnTMPyP, or MnTBAP) can provide important biochemical rationales in developing them as the therapeutic drugs against protein tyrosine nitration-induced inflammation diseases. Here, we present a comprehensive understanding of the pH-dependent redox behaviors of these MnIII-porphyrins and their structural effects on catalyzing bovine serum albumin (BSA) nitration in the presence of H2O2 and NO2-. It was found that both MnTPPS and MnTBAP stand out in catalyzing BSA nitration at physiologically close condition (pH 8), yet they are less effective at pH 6 and 10. MnTMPyP was shown to have no ability to catalyze BSA nitration under all tested pHs (pH 6, 8, and 10). The kinetics and active intermediate determination through electrochemistry method revealed that both the pH-dependent redox behavior of the central metal cation and the antioxidant capability of porphin derivative contribute to the catalytic activities of three MnIII-porphyrins in BSA nitration in the presence of H2O2/NO2-. These comprehensive studies on the oxidative reactivity of MnIII-porphyrins toward BSA nitration may provide new clues for searching the manganese-based therapeutic drugs against the inflammation-related diseases.
Collapse
Affiliation(s)
- Jiayu Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Wei
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhonghong Gao
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hailing Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Ye H, Li H, Gao Z. Y12 nitration of human calcitonin (hCT): A promising strategy to produce non-aggregation bioactive hCT. Nitric Oxide 2020; 104-105:11-19. [PMID: 32827754 DOI: 10.1016/j.niox.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Irreversible aggregation can extremely limit the bioavailability and therapeutic activity of peptide-based drugs. There is therefore an urgent demand of effective strategy to control peptide aggregation. Recently, we found that tyrosine nitration at certain sites of peptide can effectively inhibit its aggregation. This minor modification may be an ideal strategy to the rational design of peptide-based drugs with low aggregation propensity yet without loss of bioactivity. Human calcitonin (hCT) is such a peptide hormone known for its hypocalcaemic effect but has limited pharmaceutical potential due to a high tendency to aggregate. In this study, by using multiple techniques including Fluorescence, TEM, Nu-PAGE and CD, we demonstrated that Y12 nitration of hCT would significantly inhibit its self-assembles, and we also found that this modification would not only reduce the cytotoxicity induced by peptide aggregation, but also had little effect on its potency. This finding may provide a novel strategy for clinically application of hCT instead of sCT.
Collapse
Affiliation(s)
- Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Schaffert LN, Carter WG. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020; 10:232. [PMID: 32290481 PMCID: PMC7226274 DOI: 10.3390/brainsci10040232] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The accumulation of abnormal protein aggregates represents a universal hallmark of neurodegenerative diseases (NDDs). Post-translational modifications (PTMs) regulate protein structure and function. Dysregulated PTMs may influence the propensity for protein aggregation in NDD-proteinopathies. To investigate this, we systematically reviewed the literature to evaluate effects of PTMs on aggregation propensity for major proteins linked to the pathogenesis and/or progression of NDDs. A search of PubMed, MEDLINE, EMBASE, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between PTMs and protein aggregation in seven NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias, transmissible spongiform encephalopathy, and multiple sclerosis. Together, 1222 studies were identified, of which 69 met eligibility criteria. We identified that the following PTMs, in isolation or combination, potentially act as modulators of proteinopathy in NDDs: isoaspartate formation in Aβ, phosphorylation of Aβ or tau in AD; acetylation, 4-hydroxy-2-neonal modification, O-GlcNAcylation or phosphorylation of α-synuclein in PD; acetylation or phosphorylation of TAR DNA-binding protein-43 in ALS, and SUMOylation of superoxide dismutase-1 in ALS; and phosphorylation of huntingtin in HD. The potential pharmacological manipulation of these aggregation-modulating PTMs represents an as-yet untapped source of therapy to treat NDDs.
Collapse
Affiliation(s)
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK;
| |
Collapse
|
10
|
Dyakin VV, Wisniewski TM, Lajtha A. Chiral Interface of Amyloid Beta (Aβ): Relevance to Protein Aging, Aggregation and Neurodegeneration. Symmetry (Basel) 2020; 12:585. [PMID: 34327009 PMCID: PMC8317441 DOI: 10.3390/sym12040585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biochirality is the subject of distinct branches of science, including biophysics, biochemistry, the stereochemistry of protein folding, neuroscience, brain functional laterality and bioinformatics. At the protein level, biochirality is closely associated with various post-translational modifications (PTMs) accompanied by the non-equilibrium phase transitions (PhTs NE). PTMs NE support the dynamic balance of the prevalent chirality of enzymes and their substrates. The stereoselective nature of most biochemical reactions is evident in the enzymatic (Enz) and spontaneous (Sp) PTMs (PTMs Enz and PTMs Sp) of proteins. Protein chirality, which embraces biophysics and biochemistry, is a subject of this review. In this broad field, we focus attention to the amyloid-beta (Aβ) peptide, known for its essential cellular functions and associations with neuropathology. The widely discussed amyloid cascade hypothesis (ACH) of Alzheimer's disease (AD) states that disease pathogenesis is initiated by the oligomerization and subsequent aggregation of the Aβ peptide into plaques. The racemization-induced aggregation of protein and RNA have been extensively studied in the search for the contribution of spontaneous stochastic stereo-specific mechanisms that are common for both kinds of biomolecules. The failure of numerous Aβ drug-targeting therapies requires the reconsolidation of the ACH with the concept of PTMs Sp. The progress in methods of chiral discrimination can help overcome previous limitations in the understanding of AD pathogenesis. The primary target of attention becomes the network of stereospecific PTMs that affect the aggregation of many pathogenic agents, including Aβ. Extensive recent experimental results describe the truncated, isomerized and racemized forms of Aβ and the interplay between enzymatic and PTMs Sp. Currently, accumulated data suggest that non-enzymatic PTMs Sp occur in parallel to an existing metabolic network of enzymatic pathways, meaning that the presence and activity of enzymes does not prevent non-enzymatic reactions from occurring. PTMs Sp impact the functions of many proteins and peptides, including Aβ. This is in logical agreement with the silently accepted racemization hypothesis of protein aggregation (RHPA). Therefore, the ACH of AD should be complemented by the concept of PTMs Sp and RHPA.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Departmemts: Virtual Reality Perception Lab. (VV. Dyakin) and Center for Neurochemistry (A. Lajtha), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Departmemts: Virtual Reality Perception Lab. (VV. Dyakin) and Center for Neurochemistry (A. Lajtha), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
11
|
Zhao J, Wu J, Yang Z, Ouyang L, Zhu L, Gao Z, Li H. Nitration of hIAPP promotes its toxic oligomer formation and exacerbates its toxicity towards INS-1 cells. Nitric Oxide 2019; 87:23-30. [PMID: 30849493 DOI: 10.1016/j.niox.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Amyloid formation of human islet amyloid polypeptide (hIAPP) is one of the most common pathological features of type 2 diabetes (T2D). Increasing evidences have shown that the overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) play an important role in the development of the T2D. Interestingly, our previous studies indicated that heme could bind to hIAPP, and the complex might induce the nitration of tyrosine residue (Y37) of hIAPP in the presence of hydrogen peroxide and nitrite. However, it remains unclear about effect of the nitration on the implicated function of hIAPP in the development of T2D. In this study, fluorescent assays, transmission electron microscopy (TEM), atomic force microscope (AFM) were used to demonstrate that nitration of hIAPP significantly decreased its fibril formation. But the decreased fibril formation was not through the diminished aggregation of hIAPP monomer as suggested by the results of circular dichroism spectroscopy (CD) and gel electrophoresis assay. Surface-enhanced raman spectroscopy (SERS) indicated that nitration of hIAPP impaired the intermolecular hydrogen bonding. On the basis of these results, we hypothesize that nitration of hIAPP may block the intermolecular hydrogen bonding, leading to the inhibition of its fibril formation. In addition, cytotoxicity study of native and modified hIAPP was also performed on INS-1 cells, which revealed exacerbated toxicity of hIAPP by its nitration. The findings in this study that nitration of hIAPP promotes its oligomer formation and thus exacerbates its cytotoxicity suggests a possible link between the nitrite (or the sum of nitrite and nitrate) levels and T2D, and ameliorated nitration of hIAPP by diminishing nitrative stress might be a promising therapeutic strategy for T2D.
Collapse
Affiliation(s)
- Jie Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jinming Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhen Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Lei Ouyang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Lihua Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
12
|
Zhao J, Gao W, Yang Z, Li H, Gao Z. Nitration of amyloid-β peptide (1–42) as a protective mechanism for the amyloid-β peptide (1–42) against copper ion toxicity. J Inorg Biochem 2019; 190:15-23. [DOI: 10.1016/j.jinorgbio.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
|
13
|
Kalhor HR, Nazari Khodadadi A. Synthesis and Structure Activity Relationship of Pyridazine-Based Inhibitors for Elucidating the Mechanism of Amyloid Inhibition. Chem Res Toxicol 2018; 31:1092-1104. [DOI: 10.1021/acs.chemrestox.8b00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Reza Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| | - Alireza Nazari Khodadadi
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 111559516, Iran
| |
Collapse
|
14
|
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG. APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 2017; 110:1-13. [PMID: 28811267 PMCID: PMC5688956 DOI: 10.1016/j.neuint.2017.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) proposes amyloid- β (Aβ) is a chief pathological element of dementia. AD therapies have targeted monomeric and oligomeric Aβ 1-40 and 1-42 peptides. However, alternative APP proteolytic processing produces a complex roster of Aβ species. In addition, Aβ peptides are subject to extensive posttranslational modification (PTM). We propose that amplified production of some APP/Aβ species, perhaps exacerbated by differential gene expression and reduced peptide degradation, creates a diverse spectrum of modified species which disrupt brain homeostasis and accelerate AD neurodegeneration. We surveyed the literature to catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We speculate that accumulation of these alterations induce changes in secondary and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in sporadic AD. Additionally, amyloid-β peptides with a pyroglutamate modification at position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid deposits. The intrinsic physical properties of these species, including resistance to degradation, an enhanced aggregation rate, increased neurotoxicity, and association with behavioral deficits, suggest their emergence is linked to dementia. The generation of specific 3D-molecular conformations of Aβ impart unique biophysical properties and a capacity to seed the prion-like global transmission of amyloid through the brain. The accumulation of rogue Aβ ultimately contributes to the destruction of vascular walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ PTM and the analysis of the toxicity that they induced may help create essential biomarkers to more precisely stage AD pathology, design countermeasures and gauge the impacts of interventions.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Division of Clinical Education, Midwestern University, Glendale, AZ 85308, USA.
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University, Glendale, AZ 85308, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles CA 90095-1569, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marwan S Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
15
|
Huang Y, Yang Z, Xu H, Zhang P, Gao Z, Li H. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus. Int J Biol Macromol 2017; 102:1009-1015. [DOI: 10.1016/j.ijbiomac.2017.04.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
|
16
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Amyloid-β Peptide Nitrotyrosination Stabilizes Oligomers and Enhances NMDAR-Mediated Toxicity. J Neurosci 2017; 36:11693-11703. [PMID: 27852777 DOI: 10.1523/jneurosci.1081-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/10/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the pathological aggregation of the amyloid-β peptide (Aβ). Monomeric soluble Aβ can switch from helicoidal to β-sheet conformation, promoting its assembly into oligomers and subsequently to amyloid fibrils. Oligomers are highly toxic to neurons and have been reported to induce synaptic transmission impairments. The progression from oligomers to fibrils forming senile plaques is currently considered a protective mechanism to avoid the presence of the highly toxic oligomers. Protein nitration is a frequent post-translational modification under AD nitrative stress conditions. Aβ can be nitrated at tyrosine 10 (Y10) by peroxynitrite. Based on our analysis of ThT binding, Western blot and electron and atomic force microscopy, we report that Aβ nitration stabilizes soluble, highly toxic oligomers and impairs the formation of fibrils. We propose a mechanism by which fibril elongation is interrupted upon Y10 nitration: Nitration disrupts fibril-forming folds by preventing H14-mediated bridging, as shown with an Aβ analog containing a single residue (H to E) replacement that mimics the behavior of nitrated Aβ related to fibril formation and neuronal toxicity. The pathophysiological role of our findings in AD was highlighted by the study of these nitrated oligomers on mouse hippocampal neurons, where an increased NMDAR-dependent toxicity of nitrated Aβ oligomers was observed. Our results show that Aβ nitrotyrosination is a post-translational modification that increases Aβ synaptotoxicity. SIGNIFICANCE STATEMENT We report that nitration (i.e., the irreversible addition of a nitro group) of the Alzheimer-related peptide amyloid-β (Aβ) favors the stabilization of highly toxic oligomers and inhibits the formation of Aβ fibrils. The nitrated Aβ oligomers are more toxic to neurons due to increased cytosolic calcium levels throughout their action on NMDA receptors. Sustained elevated calcium levels trigger excitotoxicity, a characteristic event in Alzheimer's disease.
Collapse
|
18
|
Coskuner O, Uversky VN. Tyrosine Regulates β-Sheet Structure Formation in Amyloid-β42: A New Clustering Algorithm for Disordered Proteins. J Chem Inf Model 2017; 57:1342-1358. [DOI: 10.1021/acs.jcim.6b00761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Orkid Coskuner
- Department
of Chemistry and Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
- Institut
für Physikalische Chemie, Universität zu Köln, Luxemburger
Strasse 116, 50939 Köln, Germany
- Molecular
Biotechnology Division, Turkisch-Deutsche Universität, Sahinkaya
Caddesi, No. 71, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N. Uversky
- Department
of Molecular Medicine, USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Laboratory
of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
19
|
Zhao J, Wu J, Yang Z, Li H, Gao Z. Nitration of Tyrosine Residue Y10 of Aβ 1-42 Significantly Inhibits Its Aggregation and Cytotoxicity. Chem Res Toxicol 2017; 30:1085-1092. [PMID: 28272880 DOI: 10.1021/acs.chemrestox.6b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-β plaques and oxidative stress are the major hallmarks of Alzheimer's disease. Our previous study found that the heme-Aβ complex enhanced the catalytic effect of free heme on protein tyrosine nitration in the presence of hydrogen peroxide (H2O2) and nitrite (NO2-). Y10 in Aβ could be the first target to be nitrated. We also found that nitration of Aβ1-40 significantly decreased its aggregation. However, a contrary report showed that nitration of Aβ1-42 by peroxynitrite enhanced its aggregation. To rule out the interference of peroxynitrite caused Aβ oxidation, we used synthetic Y10 nitrated Aβ1-42 to study the influence of Y10 nitration on Aβ1-42's aggregation and cytotoxicity in this study. We confirmed that Aβ1-42 could be nitrated in the presence of H2O2, NO2-, and heme by dot blotting. CD spectroscopy showed an increase of β-sheet structure of Aβ1-42 and its mutants. The thioflavin T (ThT) flourescence assay revealed that both nitration and chlorination significantly inhibited Aβ1-42 fibril formation. TEM and AFM observations of Aβ peptide aggregates further confirmed that Y10 modification inhibited Aβ1-42 fibril formation. The cytotoxicity study of native and modified Aβ peptides on SH-SY5Y cells revealed that nitration of Aβ1-42 remarkably decreased the neurotoxicity of Aβ1-42. On the basis of these results, we hypothesized that nitration of Y10 may block the π-π stacking interactions of Aβ1-42 so that it inhibit its aggregation and neurotoxicity. More importantly, considerable evidence suggested that the levels of nitrite plus nitrate significantly decreased in the brain of AD patients. Thus, we believe that these findings would be helpful for further understanding the function of Aβ in AD.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Jinming Wu
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Zhen Yang
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77004, United States
| | - Hailing Li
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China.,Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Wuhan, 430074, People's Republic of China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China.,Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica , Wuhan, 430074, People's Republic of China
| |
Collapse
|
20
|
Ye H, Yang Z, Li H, Gao Z. NPY binds with heme to form a NPY–heme complex: enhancing peroxidase activity in free heme and promoting NPY nitration and inactivation. Dalton Trans 2017; 46:10315-10323. [DOI: 10.1039/c7dt01822c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NPY binding with heme enhances the peroxidase activity of free heme, resulting in the important tyrosine nitration, which will attenuate its bioactivity.
Collapse
Affiliation(s)
- Huixian Ye
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
| | - Zhen Yang
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston
- USA
| | - Hailing Li
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
| |
Collapse
|
21
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
22
|
Lu N, Li J, Gao Z. Key roles of Tyr 10 in Cu bound Aβ complexes and its relevance to Alzheimer's disease. Arch Biochem Biophys 2015; 584:1-9. [PMID: 26247837 DOI: 10.1016/j.abb.2015.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 11/26/2022]
Abstract
Recent studies show that the accumulation of redox-active Cu mediates the aggregation of amyloid β-peptide (Aβ) and conspicuous oxidative damage to the brain in Alzheimer's disease (AD). However, the key roles for Tyr 10 in Aβ-Cu(II) complex and its potential biological relevance to AD etiology under oxidative stress, were not stressed enough. Interestingly, our results indicated that Aβ40 (not Aβ16)-Cu(II) complex showed obviously enhanced peroxidase activity than free Cu(II). Although Tyr 10 was not the residue binding Cu(II), the mutation of Tyr 10 residue in Aβ40 decreased the peroxidase activity of Aβ40-Cu(II) complex, and the mutation of Tyr 10 could inhibit Aβ40 aggregation. Under oxidative and nitrative stress conditions, the Aβ-Cu(II) complex caused oxidation and nitration of the Aβ Tyr 10 residue through peroxidase-like reactions, where the formation of Cu(I) and hydroxyl radical (OH) was proposed as a chemical mechanism. We also showed that, when Aβ40 aggregates were bound to Cu(II), they retained peroxidase-like activity. Therefore, Tyr 10 residue is pivotal in Aβ-Cu(II) complex and shows important relevance to oxidative stress, implicating the novel significance of Tyr 10 residue as well as Aβ-Cu(II) complex in the pathology of AD.
Collapse
Affiliation(s)
- Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| | - Jiayu Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|