1
|
Bench G. The development and evolution of biological AMS at Livermore: a perspective. Bioanalysis 2025; 17:345-354. [PMID: 39902785 PMCID: PMC11875510 DOI: 10.1080/17576180.2025.2460391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Biological accelerator mass spectrometry (AMS) provides ultrasensitive carbon-14 isotopic analysis enabling a deeper understanding of human health concerns by enabling quantification of pharmacokinetics and other molecular endpoints directly in humans. It enables environmentally and human relevant studies of metabolic pathways through the use of very low concentrations of labeled metabolic substrates in cells and organisms. Here, we discuss why AMS is an important tool for the biosciences, the development and evolution of biological AMS at Livermore and discuss technical refinements that will improve the efficiency of operation for the measurement of ultra-trace levels of 14C, which, long term, will enable greater ease of use and sample throughput.
Collapse
Affiliation(s)
- Graham Bench
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
2
|
Carlin DJ, Rider CV. Combined Exposures and Mixtures Research: An Enduring NIEHS Priority. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75001. [PMID: 38968090 PMCID: PMC11225971 DOI: 10.1289/ehp14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The National Institute of Environmental Health Sciences (NIEHS) continues to prioritize research to better understand the health effects resulting from exposure to mixtures of chemical and nonchemical stressors. Mixtures research activities over the last decade were informed by expert input during the development and deliberations of the 2011 NIEHS Workshop "Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects." NIEHS mixtures research efforts since then have focused on key themes including a) prioritizing mixtures for study, b) translating mixtures data from in vitro and in vivo studies, c) developing cross-disciplinary collaborations, d) informing component-based and whole-mixture assessment approaches, e) developing sufficient similarity methods to compare across complex mixtures, f) using systems-based approaches to evaluate mixtures, and g) focusing on management and integration of mixtures-related data. OBJECTIVES We aimed to describe NIEHS driven research on mixtures and combined exposures over the last decade and present areas for future attention. RESULTS Intramural and extramural mixtures research projects have incorporated a diverse array of chemicals (e.g., polycyclic aromatic hydrocarbons, botanicals, personal care products, wildfire emissions) and nonchemical stressors (e.g., socioeconomic factors, social adversity) and have focused on many diseases (e.g., breast cancer, atherosclerosis, immune disruption). We have made significant progress in certain areas, such as developing statistical methods for evaluating multiple chemical associations in epidemiology and building translational mixtures projects that include both in vitro and in vivo models. DISCUSSION Moving forward, additional work is needed to improve mixtures data integration, elucidate interactions between chemical and nonchemical stressors, and resolve the geospatial and temporal nature of mixture exposures. Continued mixtures research will be critical to informing cumulative impact assessments and addressing complex challenges, such as environmental justice and climate change. https://doi.org/10.1289/EHP14340.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Maier MLV, Siddens LK, Pennington JM, Uesugi SL, Labut EM, Vertel EA, Anderson KA, Tidwell LG, Tilton SC, Ognibene TJ, Turteltaub KW, Smith JN, Williams DE. Impact of phenanthrene co-administration on the toxicokinetics of benzo[a]pyrene in humans. UPLC-accelerator mass spectrometry following oral microdosing. Chem Biol Interact 2023; 382:110608. [PMID: 37369263 PMCID: PMC10782561 DOI: 10.1016/j.cbi.2023.110608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Current risk assessments for environmental carcinogens rely on animal studies utilizing doses orders of magnitude higher than actual human exposures. Epidemiological studies of people with high exposures (e.g., occupational) are of value, but rely on uncertain exposure data. In addition, exposures are typically not to a single chemical but to mixtures, such as polycyclic aromatic hydrocarbons (PAHs). The extremely high sensitivity of accelerator mass spectrometry (AMS) allows for dosing humans with known carcinogens with de minimus risk. In this study UPLC-AMS was used to assess the toxicokinetics of [14C]-benzo[a]pyrene ([14C]-BaP) when dosed alone or in a binary mixture with phenanthrene (Phe). Plasma was collected for 48 h following a dose of [14C]-BaP (50 ng, 5.4 nCi) or the same dose of [14C]-BaP plus Phe (1250 ng). Following the binary mixture, Cmax of [14C]-BaP significantly decreased (4.4-fold) whereas the volume of distribution (Vd) increased (2-fold). Further, the toxicokinetics of twelve [14C]-BaP metabolites provided evidence of little change in the metabolite profile of [14C]-BaP and the pattern was overall reduction consistent with reduced absorption (decrease in Cmax). Although Phe was shown to be a competitive inhibitor of the major hepatic cytochrome P-450 (CYP) responsible for metabolism of [14C]-BaP, CYP1A2, the high inhibition constant (Ki) and lack of any increase in unmetabolized [14C]-BaP in plasma makes this mechanism unlikely to be responsible. Rather, co-administration of Phe reduces the absorption of [14C]-BaP through a mechanism yet to be determined. This is the first study to provide evidence that, at actual environmental levels of exposure, the toxicokinetics of [14C]-BaP in humans is markedly altered by the presence of a second PAH, Phe, a common component of environmental PAH mixtures.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Lisbeth K Siddens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Jamie M Pennington
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| | - Edwin M Labut
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| | - Emily A Vertel
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, 97331, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, 97331, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Jordan N Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, 97331, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
4
|
Choi JW, Kim M, Song G, Kho Y, Choi K, Shin MY, Kim S. Toxicokinetic analyses of naphthalene, fluorene, phenanthrene, and pyrene in humans after single oral administration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161899. [PMID: 36716884 DOI: 10.1016/j.scitotenv.2023.161899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated by incomplete combustion of organic matter. They have health effects in multiple organs and can cause lung, skin, and bladder cancers in humans. Although data regarding their toxicity is available, information on the absorption, distribution, metabolism, and excretion of PAHs in humans is very limited. In the present study, deuterium-labeled naphthalene (Nap), fluorene (Flu), phenanthrene (Phe), and pyrene (Pyr) were orally administered as a single dose (0.02-0.04 mg/kg) to eight healthy adults. Both serum and urine samples were monitored for 72 h after the exposure. Parent compounds and PAH metabolites (monohydroxy-PAHs; OH-PAHs) were measured by headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry, respectively. Based on the time-concentration profiles in serum and urine, non-compartmental analysis was performed, and two-compartment models were constructed and validated for each PAH. Subsequently, all of the parent compounds were rapidly absorbed (Tmax: 0.25 to 1.50 h) after oral administration and excreted in urine with a biological half-life (T1/2) of 1.01 to 2.99 h. The fractional urinary excretion (Fue) of OH-PAHs ranged from 0.07 % to 11.3 %; their T1/2 values ranged from 3.4 to 11.0 h. The two-compartment models successfully described the toxicokinetic characteristics of each PAH and its metabolites. Fue and the two-compartment models could be useful tools for exposure simulation or dose-reconstruction of PAHs. The results of this study will provide useful information for interpreting biomonitoring data of PAHs.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Munhee Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Geurim Song
- Department of Health, Environment & Safety, Eulji University, Sungnam, Gyeonggi, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Sungnam, Gyeonggi, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Mi-Yeon Shin
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Vermillion Maier ML, Siddens LK, Pennington JM, Uesugi SL, Tilton SC, Vertel EA, Anderson KA, Tidwell LG, Ognibene TJ, Turteltaub KW, Smith JN, Williams DE. Benzo[a]pyrene toxicokinetics in humans following dietary supplementation with 3,3'-diindolylmethane (DIM) or Brussels sprouts. Toxicol Appl Pharmacol 2023; 460:116377. [PMID: 36642108 PMCID: PMC9946811 DOI: 10.1016/j.taap.2023.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, ALS 1007, Oregon State University, Corvallis, OR 97331, USA.
| | - Lisbeth K Siddens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Jamie M Pennington
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Emily A Vertel
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Jordan N Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
6
|
Baliu-Rodriguez D, Stewart BJ, Ognibene TJ. HPLC-Parallel accelerator and molecular mass spectrometry analysis of 14C-labeled amino acids. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1216:123590. [PMID: 36669256 PMCID: PMC9994536 DOI: 10.1016/j.jchromb.2022.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Accelerator mass spectrometry (AMS) is the method of choice for quantitation of low amounts of 14C-labeled biomolecules. Despite exquisite sensitivity, an important limitation of AMS is its inability to provide structural information about the analyte. This limitation is not critical when the labeled compounds are well-characterized prior to AMS analysis. However, analyte identity is important in other experiments where, for example, a compound is metabolized and the structures of its metabolites are not known. We previously described a moving wire interface that enables direct AMS measurement of liquid sample in the form of discrete drops or HPLC eluent without the need for individual fraction collection, termed liquid sample-AMS (LS-AMS). We now report the coupling of LS-AMS with a molecular mass spectrometer, providing parallel accelerator and molecular mass spectrometry (PAMMS) detection of analytes separated by liquid chromatography. The repeatability of the method was examined by performing repeated injections of 14C-labeled tryptophan, and relative standard deviations of the 14C peak areas were ≤10.57% after applying a normalization factor based on a standard. Five 14C-labeled amino acids were separated and detected to provide simultaneous quantitative AMS and structural MS data, and AMS results were compared with solid sample-AMS (SS-AMS) data using Bland-Altman plots. To demonstrate the utility of the workflow, yeast cells were grown in a medium with 14C-labeled tryptophan. The cell extracts were analyzed by PAMMS, and 14C was detected in tryptophan and its metabolite kynurenine.
Collapse
Affiliation(s)
- David Baliu-Rodriguez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
| | - Benjamin J Stewart
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| |
Collapse
|
7
|
Competitive Metabolism of Polycyclic Aromatic Hydrocarbons (PAHs): An Assessment Using In Vitro Metabolism and Physiologically Based Pharmacokinetic (PBPK) Modeling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148266. [PMID: 35886113 PMCID: PMC9323266 DOI: 10.3390/ijerph19148266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Humans are routinely exposed to complex mixtures such as polycyclic aromatic hydrocarbons (PAHs) rather than to single compounds, as are often assessed for hazards. Cytochrome P450 enzymes (CYPs) metabolize PAHs, and multiple PAHs found in mixtures can compete as substrates for individual CYPs (e.g., CYP1A1, CYP1B1, etc.). The objective of this study was to assess competitive inhibition of metabolism of PAH mixtures in humans and evaluate a key assumption of the Relative Potency Factor approach that common human exposures will not cause interactions among mixture components. To test this objective, we co-incubated binary mixtures of benzo[a]pyrene (BaP) and dibenzo[def,p]chrysene (DBC) in human hepatic microsomes and measured rates of enzymatic BaP and DBC disappearance. We observed competitive inhibition of BaP and DBC metabolism and measured inhibition coefficients (Ki), observing that BaP inhibited DBC metabolism more potently than DBC inhibited BaP metabolism (0.061 vs. 0.44 µM Ki, respectively). We developed a physiologically based pharmacokinetic (PBPK) interaction model by integrating PBPK models of DBC and BaP and incorporating measured metabolism inhibition coefficients. The PBPK model predicts significant increases in BaP and DBC concentrations in blood AUCs following high oral doses of PAHs (≥100 mg), five orders of magnitude higher than typical human exposures. We also measured inhibition coefficients of Supermix-10, a mixture of the most abundant PAHs measured at the Portland Harbor Superfund Site, on BaP and DBC metabolism. We observed similar potencies of inhibition coefficients of Supermix-10 compared to BaP and DBC. Overall, results of this study demonstrate that these PAHs compete for the same enzymes and, at high doses, inhibit metabolism and alter internal dosimetry of exposed PAHs. This approach predicts that BaP and DBC exposures required to observe metabolic interaction are much higher than typical human exposures, consistent with assumptions used when applying the Relative Potency Factor approach for PAH mixture risk assessment.
Collapse
|
8
|
Singh RSP, Dowty ME, Salganik M, Brodfuehrer JI, Walker GS, Sharma R, Beebe JS, Danto SI. A Phase 1 Study to Assess Mass Balance and Absolute Bioavailability of Zimlovisertib in Healthy Male Participants Using a 14 C-Microtracer Approach. Clin Pharmacol Drug Dev 2022; 11:815-825. [PMID: 35506501 PMCID: PMC9322294 DOI: 10.1002/cpdd.1109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/04/2022] [Indexed: 12/03/2022]
Abstract
Zimlovisertib (PF‐06650833) is a selective, reversible inhibitor of interleukin‐1 receptor‐associated kinase 4 (IRAK4) with anti‐inflammatory effects. This phase 1, open‐label, fixed‐sequence, two‐period, single‐dose study aimed to evaluate the mass balance and excretion rate of zimlovisertib in healthy male participants using a 14C‐microtracer approach. All six participants received 300 mg 14C‐zimlovisertib with lower radioactivity per mass unit orally in Period A, then unlabeled zimlovisertib 300 mg orally and 14C‐zimlovisertib 135 μg intravenously (IV) in Period B. Study objectives included extent and rate of excretion of 14C‐zimlovisertib, pharmacokinetics, and safety and tolerability of oral and IV zimlovisertib. Total radioactivity recovered in urine and feces was 82.4% ± 6.8% (urine 23.1% ± 12.3%, feces 59.3% ± 9.7%) in Period A. Zimlovisertib was absorbed rapidly following oral administration, with the fraction absorbed estimated to be 44%. Absolute oral bioavailability of the 300‐mg dose was 17.4% (90% confidence interval 14.1%, 21.5%) using the dose‐normalized area under the concentration–time curve from time 0 to infinity. There were no deaths, serious adverse events (AEs), severe AEs, discontinuations or dose reductions due to AEs, and no clinically significant laboratory abnormalities. These results demonstrate that zimlovisertib had low absolute oral bioavailability and low absorption (<50%).
Collapse
|
9
|
Pande P, Madeen EP, Williams DE, Crowell SR, Ognibene TJ, Turteltaub KW, Corley RA, Smith JN. Translating dosimetry of Dibenzo[def,p]chrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol Appl Pharmacol 2022; 438:115830. [PMID: 34933053 PMCID: PMC9264404 DOI: 10.1016/j.taap.2021.115830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.
Collapse
Affiliation(s)
- Paritosh Pande
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erin P Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Susan R Crowell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ted J Ognibene
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ken W Turteltaub
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Richard A Corley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
10
|
Vermillion Maier ML, Siddens LK, Pennington JM, Uesugi SL, Anderson KA, Tidwell LG, Tilton SC, Ognibene TJ, Turteltaub KW, Smith JN, Williams DE. Benzo[a]pyrene (BaP) metabolites predominant in human plasma following escalating oral micro-dosing with [ 14C]-BaP. ENVIRONMENT INTERNATIONAL 2022; 159:107045. [PMID: 34920278 PMCID: PMC8791557 DOI: 10.1016/j.envint.2021.107045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Benzo[a]pyrene (BaP) is formed by incomplete combustion of organic materials (petroleum, coal, tobacco, etc.). BaP is designated by the International Agency for Research on Cancer as a group 1 known human carcinogen; a classification supported by numerous studies in preclinical models and epidemiology studies of exposed populations. Risk assessment relies on toxicokinetic and cancer studies in rodents at doses 5-6 orders of magnitude greater than average human uptake. Using a dose-response design at environmentally relevant concentrations, this study follows uptake, metabolism, and elimination of [14C]-BaP in human plasma by employing UPLC - accelerator mass spectrometry (UPLC-AMS). Volunteers were administered 25, 50, 100, and 250 ng (2.7-27 nCi) of [14C]-BaP (with interceding minimum 3-week washout periods) with quantification of parent [14C]-BaP and metabolites in plasma measured over 48 h. [14C]-BaP median Tmax was 30 min with Cmax and area under the curve (AUC) approximating dose-dependency. Marked inter-individual variability in plasma pharmacokinetics following a 250 ng dose was seen with 7 volunteers as measured by the Cmax (8.99 ± 7.08 ng × mL-1) and AUC0-48hr (68.6 ± 64.0 fg × hr-1 × mL-1). Approximately 3-6% of the [14C] recovered (AUC0-48 hr) was parent compound, demonstrating extensive metabolism following oral dosing. Metabolite profiles showed that, even at the earliest time-point (30 min), a substantial percentage of [14C] in plasma was polar BaP metabolites. The best fit modeling approach identified non-compartmental apparent volume of distribution of BaP as significantly increasing as a function of dose (p = 0.004). Bay region tetrols and dihydrodiols predominated, suggesting not only was there extensive first pass metabolism but also potentially bioactivation. AMS enables the study of environmental carcinogens in humans with de minimus risk, allowing for important testing and validation of physiologically based pharmacokinetic models derived from animal data, risk assessment, and the interpretation of data from high-risk occupationally exposed populations.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Lisbeth K Siddens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Jamie M Pennington
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Jordan N Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
12
|
Buchholz BA, Carratt SA, Kuhn EA, Collette NM, Ding X, Van Winkle LS. Naphthalene DNA Adduct Formation and Tolerance in the Lung. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION B, BEAM INTERACTIONS WITH MATERIALS AND ATOMS 2019; 438:119-123. [PMID: 30631217 PMCID: PMC6322674 DOI: 10.1016/j.nimb.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Naphthalene (NA) is a respiratory toxicant and possible human carcinogen. NA is a ubiquitous combustion product and significant component of jet fuel. The National Toxicology Program found that NA forms tumors in two species, in rats (nose) and mice (lung). However, it has been argued that NA does not pose a cancer risk to humans because NA is bioactivated by cytochrome P450 monooxygenase enzymes that have very high efficiency in the lung tissue of rodents but low efficiency in the lung tissue of humans. It is thought that NA carcinogenesis in rodents is related to repeated cycles of lung epithelial injury and repair, an indirect mechanism. Repeated in vivo exposure to NA leads to development of tolerance, with the emergence of cells more resistant to NA insult. We tested the hypothesis that tolerance involves reduced susceptibility to the formation of NA-DNA adducts. NA-DNA adduct formation in tolerant mice was examined in individual, metabolically-active mouse airways exposed ex vivo to 250 μΜ 14C-NA. Ex vivo dosing was used since it had been done previously and the act of creating a radioactive aerosol of a potential carcinogen posed too many safety and regulatory obstacles. Following extensive rinsing to remove unbound 14C-NA, DNA was extracted and 14C-NA-DNA adducts were quantified by AMS. The tolerant mice appeared to have slightly lower NA-DNA adduct levels than non-tolerant controls, but intra-group variations were large and the difference was statistically insignificant. It appears the tolerance may be more related to other mechanisms, such as NA-protein interactions in the airway, than DNA-adduct formation.
Collapse
Affiliation(s)
- Bruce A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Sarah A Carratt
- Center for Health and the Environment, University of California, Davis, CA USA
| | - Edward A Kuhn
- Bioscience and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Nicole M Collette
- Bioscience and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, Davis, CA USA
| |
Collapse
|
13
|
Madeen E, Siddens LK, Uesugi S, McQuistan T, Corley RA, Smith J, Waters KM, Tilton SC, Anderson KA, Ognibene T, Turteltaub K, Williams DE. Toxicokinetics of benzo[a]pyrene in humans: Extensive metabolism as determined by UPLC-accelerator mass spectrometry following oral micro-dosing. Toxicol Appl Pharmacol 2018; 364:97-105. [PMID: 30582946 DOI: 10.1016/j.taap.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Benzo[a]pyrene (BaP), is a known human carcinogen (International Agency for Research on Cancer (IARC) class 1). The remarkable sensitivity (zepto-attomole 14C in biological samples) of accelerator mass spectrometry (AMS) makes possible, with de minimus risk, pharmacokinetic (PK) analysis following [14C]-BaP micro-dosing of humans. A 46 ng (5 nCi) dose was given thrice to 5 volunteers with minimum 2 weeks between dosing and plasma collected over 72 h. [14C]-BaPeq PK analysis gave plasma Tmax and Cmax values of 1.25 h and 29-82 fg/mL, respectively. PK parameters were assessed by non- compartment and compartment models. Intervals between dosing ranged from 20 to 420 days and had little impact on intra-individual variation. DNA, extracted from peripheral blood mononuclear cells (PBMCs) of 4 volunteers, showed measurable levels (LOD ~ 0.5 adducts/1011 nucleotides) in two individuals 2-3 h post-dose, approximately three orders of magnitude lower than smokers or occupationally-exposed individuals. Little or no DNA binding was detectable at 48-72 h. In volunteers the allelic variants CYP1B1*1/*⁎1, *1/*3 or *3/*3 and GSTM1*0/0 or *1 had no impact on [14C]-BaPeq PK or DNA adduction with this very limited sample. Plasma metabolites over 72 h from two individuals (one CYP1B1*1/*1 and one CYP1B1*3/*3) were analyzed by UPLC-AMS. In both individuals, parent [14C]-BaP was a minor constituent even at the earliest time points and metabolite profiles markedly distinct. AMS, coupled with UPLC, could be used in humans to enhance the accuracy of pharmacokinetics, toxicokinetics and risk assessment of environmental carcinogens.
Collapse
Affiliation(s)
- Erin Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Sandra Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | - Richard A Corley
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jordan Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katrina M Waters
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Ted Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kenneth Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
14
|
Dores-Silva PR, Cotta JAO, Landgraf MD, Rezende MOO. Soils impacted by PAHs: Would the stabilized organic matter be a green tool for the immobilization of these noxious compounds? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:313-318. [PMID: 29431582 DOI: 10.1080/03601234.2018.1431461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate the role of stabilized organic matter (vermicompost) and tropical soils in the sorption of naphthalene, anthracene and benzo[a]pyrene. The results obtained for the three compounds were extrapolated for the priority polycyclic aromatic hydrocarbons (PAHs) pollutants according to Environmental Protection Agency (US EPA). To evaluate the sorption process, high performance liquid chromatography was employed and the data was fitted by Freundlich isotherms. The results suggest that the sorption effect generally increases with the number of benzene rings of the PAHs, and that the persistence of PAHs in the environment is possibly related to the number of benzene rings in the PAH molecule. In addition, the pH of the vermicompost can strongly affect the adsorption process in this matrix.
Collapse
Affiliation(s)
- Paulo R Dores-Silva
- a Department of Chemistry and Molecular Physics , São Carlos Institute of Chemistry, University of São Paulo , São Carlos , São Paulo , Brazil
- b Department of Neuroscience, School of Medicine , University of California San Diego , La Jolla , California , USA
| | - Jussara A O Cotta
- c Department of Natural Resources, Environmental Sciences and Technology , College of Engineering, State University of Minas Gerais , João Monlevade , Minas Gerais , Brazil
| | - Maria D Landgraf
- a Department of Chemistry and Molecular Physics , São Carlos Institute of Chemistry, University of São Paulo , São Carlos , São Paulo , Brazil
| | - Maria O O Rezende
- a Department of Chemistry and Molecular Physics , São Carlos Institute of Chemistry, University of São Paulo , São Carlos , São Paulo , Brazil
| |
Collapse
|
15
|
Hummel JM, Madeen EP, Siddens LK, Uesugi SL, McQuistan T, Anderson KA, Turteltaub KW, Ognibene TJ, Bench G, Krueger SK, Harris S, Smith J, Tilton SC, Baird WM, Williams DE. Pharmacokinetics of [ 14C]-Benzo[a]pyrene (BaP) in humans: Impact of Co-Administration of smoked salmon and BaP dietary restriction. Food Chem Toxicol 2018. [PMID: 29518434 DOI: 10.1016/j.fct.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is a known human carcinogen. In non-smoking adults greater than 95% of BaP exposure is through diet. The carcinogenicity of BaP is utilized by the U.S. EPA to assess relative potency of complex PAH mixtures. PAH relative potency factors (RPFs, BaP = 1) are determined from high dose animal data. We employed accelerator mass spectrometry (AMS) to determine pharmacokinetics of [14C]-BaP in humans following dosing with 46 ng (an order of magnitude lower than human dietary daily exposure and million-fold lower than animal cancer models). To assess the impact of co-administration of food with a complex PAH mixture, humans were dosed with 46 ng of [14C]-BaP with or without smoked salmon. Subjects were asked to avoid high BaP-containing diets and a 3-day dietary questionnaire given to assess dietary exposure prior to dosing and three days post-dosing with [14C]-BaP. Co-administration of smoked salmon, containing a complex mixture of PAHs with an RPF of 460 ng BaPeq, reduced and delayed absorption. Administration of canned commercial salmon, containing very low amounts of PAHs, showed the impacts on pharmacokinetics were not due to high amounts of PAHs but rather a food matrix effect.
Collapse
Affiliation(s)
- Jessica M Hummel
- Department of Nutrition and Dietetics, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Erin P Madeen
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Tammie McQuistan
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kenneth W Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sharon K Krueger
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Stuart Harris
- Confederated Tribes of the Umatilla Indian Reservation, Nixyáawii Governance Center, Pendelton, OR, USA
| | - Jordan Smith
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Susan C Tilton
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - William M Baird
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - David E Williams
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
16
|
Malfatti MA, Enright HA, Be NA, Kuhn EA, Hok S, McNerney MW, Lao V, Nguyen TH, Lightstone FC, Carpenter TS, Bennion BJ, Valdez CA. The biodistribution and pharmacokinetics of the oxime acetylcholinesterase reactivator RS194B in guinea pigs. Chem Biol Interact 2017; 277:159-167. [PMID: 28941624 DOI: 10.1016/j.cbi.2017.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023]
Abstract
Organophosphorus-based (OP) nerve agents represent some of the most toxic substances known to mankind. The current standard of care for exposure has changed very little in the past decades, and relies on a combination of atropine to block receptor activity and oxime-type acetylcholinesterase (AChE) reactivators to reverse the OP binding to AChE. Although these oximes can block the effects of nerve agents, their overall efficacy is reduced by their limited capacity to cross the blood-brain barrier (BBB). RS194B, a new oxime developed by Radic et al. (J. Biol. Chem., 2012) has shown promise for enhanced ability to cross the BBB. To fully assess the potential of this compound as an effective treatment for nerve agent poisoning, a comprehensive evaluation of its pharmacokinetic (PK) and biodistribution profiles was performed using both intravenous and intramuscular exposure routes. The ultra-sensitive technique of accelerator mass spectrometry was used to quantify the compound's PK profile, tissue distribution, and brain/plasma ratio at four dose concentrations in guinea pigs. PK analysis revealed a rapid distribution of the oxime with a plasma t1/2 of ∼1 h. Kidney and liver had the highest concentrations per gram of tissue followed by lung, spleen, heart and brain for all dose concentrations tested. The Cmax in the brain ranged between 0.03 and 0.18% of the administered dose, and the brain-to-plasma ratio ranged from 0.04 at the 10 mg/kg dose to 0.18 at the 200 mg/kg dose demonstrating dose dependent differences in brain and plasma concentrations. In vitro studies show that both passive diffusion and active transport contribute little to RS194B traversal of the BBB. These results indicate that biodistribution is widespread, but very low quantities accumulate in the guinea pig brain, indicating this compound may not be suitable as a centrally active reactivator.
Collapse
Affiliation(s)
- Michael A Malfatti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nicholas A Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Edward A Kuhn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Saphon Hok
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - M Windy McNerney
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto, CA 94304, USA
| | - Victoria Lao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Tuan H Nguyen
- Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Brian J Bennion
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Carlos A Valdez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
17
|
Enright HA, Malfatti MA, Zimmermann M, Ognibene T, Henderson P, Turteltaub KW. Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology. Chem Res Toxicol 2016; 29:1976-1986. [PMID: 27726383 PMCID: PMC5203773 DOI: 10.1021/acs.chemrestox.6b00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10-18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.
Collapse
Affiliation(s)
- Heather A. Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Michael A. Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Ted Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Paul Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Kenneth W. Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
18
|
Madeen EP, Ognibene TJ, Corley RA, McQuistan TJ, Henderson MC, Baird WM, Bench G, Turteltaub KW, Williams DE. Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[def,p]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry. Chem Res Toxicol 2016; 29:1641-1650. [PMID: 27494294 PMCID: PMC5380438 DOI: 10.1021/acs.chemrestox.6b00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.
Collapse
Affiliation(s)
- Erin P Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Richard A Corley
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Tammie J McQuistan
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| | - Marilyn C Henderson
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
| | - William M Baird
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Ken W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
- Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
19
|
Zheng Y, Wang Q, Wang X, Chen Y, Wang X, Zhang X, Bai Z, Han X, Zhang Z. Development and Application of Zirconia Coated Paper Substrate for High Sensitivity Analysis of Therapeutic Drugs in Dried Blood Spots. Anal Chem 2016; 88:7005-13. [DOI: 10.1021/acs.analchem.5b04732] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajun Zheng
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qian Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoting Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ying Chen
- Clinical
Analysis Laboratory, Xi’an Mental Health Center, Xi’an 710061, China
| | - Xuan Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoling Zhang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zongquan Bai
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoxiao Han
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhiping Zhang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
20
|
Burt T, Yoshida K, Lappin G, Vuong L, John C, de Wildt SN, Sugiyama Y, Rowland M. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development. Clin Transl Sci 2016; 9:74-88. [PMID: 26918865 PMCID: PMC5351314 DOI: 10.1111/cts.12390] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- T Burt
- Principal, Burt Consultancy, Durham, NC, 27705, USA
| | - K Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.,Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - G Lappin
- Visiting Professor of Pharmacology School of Pharmacy University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7DL, UK
| | - L Vuong
- Principal, LTV Consulting, Davis, CA, USA.,Clinical Advisor at BioCore, Seoul, South Korea
| | - C John
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - S N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Y Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - M Rowland
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, M13 9PT, UK.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| |
Collapse
|
21
|
Moore AFT, Goicoechea HC, Barbosa F, Campiglia AD. Parallel Factor Analysis of 4.2 K Excitation–Emission Matrices for the Direct Determination of Dibenzopyrene Isomers in Coal-Tar Samples with a Cryogenic Fiber-Optic Probe Coupled to a Commercial Spectrofluorimeter. Anal Chem 2015; 87:5232-9. [DOI: 10.1021/acs.analchem.5b00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anthony F. T. Moore
- University of Central Florida, Department of Chemistry, 4111 Libra Drive, Physical Sciences Building Room 255, Orlando, Florida 32816-2366, United States
| | - Hector C. Goicoechea
- Laboratorio
de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra
de Química Analítica I, Facultad de Bioquímica
y Ciencias Biológicas, Universidad Nacional de Litoral, Santa Fe S3000ZAA, Argentina
| | - Fernando Barbosa
- Laboratório
de Toxicologia e Essencialidade de Metais, Faculdade de Ciências
Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Monte Alegre, 1404903, Ribeirão Preto-SP, Brazil
| | - Andres D. Campiglia
- University of Central Florida, Department of Chemistry, 4111 Libra Drive, Physical Sciences Building Room 255, Orlando, Florida 32816-2366, United States
| |
Collapse
|