1
|
Shi J, Liu D, Jin Q, Chen X, Zhang R, Shi T, Zhu S, Zhang Y, Zong X, Wang C, Li L. Whole-Transcriptome Analysis of Repeated Low-Level Sarin-Exposed Rat Hippocampus and Identification of Cerna Networks to Investigate the Mechanism of Sarin-Induced Cognitive Impairment. BIOLOGY 2023; 12:biology12040627. [PMID: 37106826 PMCID: PMC10136365 DOI: 10.3390/biology12040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Sarin is a potent organophosphorus nerve agent that causes cognitive dysfunction, but its underlying molecular mechanisms are poorly understood. In this study, a rat model of repeated low-level sarin exposure was established using the subcutaneous injection of 0.4 × LD50 for 21 consecutive days. Sarin-exposed rats showed persistent learning and memory impairment and reduced hippocampal dendritic spine density. A whole-transcriptome analysis was applied to study the mechanism of sarin-induced cognitive impairment, and a total of 1035 differentially expressed mRNA (DEmRNA), including 44 DEmiRNA, 305 DElncRNA, and 412 DEcircRNA, were found in the hippocampus of sarin-treated rats. According to Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Protein-Protein Interaction (PPI) analysis, these DERNAs were mainly involved in neuronal synaptic plasticity and were related to the pathogenesis of neurodegenerative diseases. The circRNA/lncRNA-miRNA-mRNA ceRNA network was constructed, in which Circ_Fmn1, miR-741-3p, miR-764-3p, miR-871-3p, KIF1A, PTPN11, SYN1, and MT-CO3 formed one circuit, and Circ_Cacna1c, miR-10b-5p, miR-18a-5p, CACNA1C, PRKCD, and RASGRP1 constituted another circuit. The balance between the two circuits was crucial for maintaining synaptic plasticity and may be the regulatory mechanism by which sarin causes cognitive impairment. Our study reveals the ceRNA regulation mechanism of sarin exposure for the first time and provides new insights into the molecular mechanisms of other organophosphorus toxicants.
Collapse
Affiliation(s)
- Jingjing Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing 102205, China
| |
Collapse
|
2
|
Singh N, Golime R, Acharya J, Palit M. Quantitative Proteomic Changes after Organophosphorous Nerve Agent Exposure in the Rat Hippocampus. ACS Chem Neurosci 2020; 11:2638-2648. [PMID: 32702963 DOI: 10.1021/acschemneuro.0c00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The widespread use of organophosphorous (OP) compounds and recent misuse of nerve agents on civilians requires an urgent need to decode their complex biological response to develop effective drugs. Proteomic profiling of biological target tissues helps in identification of molecular toxicity mechanisms. Quantitative proteomics profiling of the rat hippocampus was studied in this study. Liquid chromatography mass spectrometry (LC-MS) analysis of tandem mass tag (TMT)-labeled lysates identified 6356 proteins. A total of 69, 61, and 77 proteins were upregulated, and 66, 35, and 70 proteins were downregulated at 30 min, 1 day, and 7 days after soman exposure. This is the first report on the soman-induced proteomic changes to the best of our knowledge. Bioinformatics analysis revealed soman-induced broad-range proteomic changes in key pathways related to glutamate, acetylcholine, GABA, 5-hydroxytryptamine, and adrenergic receptors, G-protein signaling, chemokine and cytokine-mediated inflammation, cytoskeleton, neurodegeneration (Parkinson's and Alzheimer's), Wnt signaling, synaptic vesicle trafficking, MAP kinases, proteosome degradation, metabolism, and cell death. Selected protein changes were verified by immunoblotting, and neuropathological findings indicated significant brain damage. Results demonstrate that persistent proteomic changes in the brain can cause multiple neurological effects through cholinergic and non-cholinergic pathways, and these mechanistic insights are useful in the development of novel drugs.
Collapse
Affiliation(s)
- Naveen Singh
- Biochemistry-Vertox Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P. 474002, India
| | - RamaRao Golime
- Biochemistry-Vertox Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P. 474002, India
| | | | - Meehir Palit
- Biochemistry-Vertox Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P. 474002, India
| |
Collapse
|
3
|
Novatt H, Theisen TC, Massie T, Massie T, Simonyan V, Voskanian-Kordi A, Renn LA, Rabin RL. Distinct Patterns of Expression of Transcription Factors in Response to Interferonβ and Interferonλ1. J Interferon Cytokine Res 2016; 36:589-598. [PMID: 27447339 DOI: 10.1089/jir.2016.0031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After viral infection, type I and III interferons (IFNs) are coexpressed by respiratory epithelial cells (RECs) and activate the ISGF3 transcription factor (TF) complex to induce expression of a cell-specific set of interferon-stimulated genes (ISGs). Type I and III IFNs share a canonical signaling pathway, suggesting that they are redundant. Animal and in vitro models, however, have shown that they are not redundant. Because TFs dictate cellular phenotype and function, we hypothesized that focusing on TF-ISG will reveal critical combinatorial and nonredundant functions of type I or III IFN. We treated BEAS-2B human RECs with increasing doses of IFNβ or IFNλ1 and measured expression of TF-ISG. ISGs were expressed in a dose-dependent manner with a nonlinear jump at intermediate doses. At subsaturating combinations of IFNβ and IFNλ1, many ISGs were expressed in a pattern that we modeled with a cubic equation that mathematically defines this threshold effect. Uniquely, IFNβ alone induced early and transient IRF1 transcript and protein expression, while IFNλ1 alone induced IRF1 protein expression at low levels that were sustained through 24 h. In combination, saturating doses of these 2 IFNs together enhanced and sustained IRF1 expression. We conclude that the cubic model quantitates combinatorial effects of IFNβ and IFNλ1 and that IRF1 may mediate nonredundancy of type I or III IFN in RECs.
Collapse
Affiliation(s)
- Hilary Novatt
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Terence C Theisen
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Tammy Massie
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Tristan Massie
- 2 Drugs Evaluation and Research, USFDA, Silver Spring, Maryland
| | - Vahan Simonyan
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Alin Voskanian-Kordi
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Lynnsey A Renn
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Ronald L Rabin
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
4
|
Nagel DA, Hill EJ, O'Neil J, Mireur A, Coleman MD. The effects of the fungicides fenhexamid and myclobutanil on SH-SY5Y and U-251 MG human cell lines. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:968-976. [PMID: 25461557 DOI: 10.1016/j.etap.2014.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48h of incubation with increasing concentrations of pesticides ranging from 1 to 1000μM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure.
Collapse
Affiliation(s)
- David A Nagel
- School of Life and Health Sciences, Aston University, Aston Triangle, B4 7ET Birmingham, UK
| | - Eric J Hill
- School of Life and Health Sciences, Aston University, Aston Triangle, B4 7ET Birmingham, UK
| | - John O'Neil
- School of Life and Health Sciences, Aston University, Aston Triangle, B4 7ET Birmingham, UK
| | - Alexandra Mireur
- School of Life and Health Sciences, Aston University, Aston Triangle, B4 7ET Birmingham, UK
| | - Michael D Coleman
- School of Life and Health Sciences, Aston University, Aston Triangle, B4 7ET Birmingham, UK.
| |
Collapse
|
5
|
Efficacy of antidotes (midazolam, atropine and HI-6) on nerve agent induced molecular and neuropathological changes. BMC Neurosci 2014; 15:47. [PMID: 24708580 PMCID: PMC3984638 DOI: 10.1186/1471-2202-15-47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas. Results Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2 × LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus. Conclusion Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes and subsequent long term neurological effects induced by nerve agents.
Collapse
|
6
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Gao X, Lin H, Ray R, Ray P. Toxicogenomic studies of human neural cells following exposure to organophosphorus chemical warfare nerve agent VX. Neurochem Res 2013; 38:916-34. [PMID: 23440544 DOI: 10.1007/s11064-013-0996-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/25/2013] [Accepted: 01/31/2013] [Indexed: 02/01/2023]
Abstract
Organophosphorus (OP) compounds represent an important group of chemical warfare nerve agents that remains a significant and constant military and civilian threat. OP compounds are considered acting primarily via cholinergic pathways by binding irreversibly to acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Many studies over the past years have suggested that other mechanisms of OP toxicity exist, which need to be unraveled by a comprehensive and systematic approach such as genome-wide gene expression analysis. Here we performed a microarray study in which cultured human neural cells were exposed to 0.1 or 10 μM of VX for 1 h. Global gene expression changes were analyzed 6, 24, and 72 h post exposure. Functional annotation and pathway analysis of the differentially expressed genes has revealed many genes, networks and canonical pathways that are related to nervous system development and function, or to neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In particular, the neuregulin pathway impacted by VX exposure has important implications in many nervous system diseases including schizophrenia. These results provide useful information valuable in developing suitable antidotes for more effective prevention and treatment of, as well as in developing biomarkers for, VX-induced chronic neurotoxicity.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
8
|
|
9
|
RamaRao G, Bhattacharya B, Kumar S, Waghmare C. Gene expression and phosphoprotein profile of certain key neuronal signaling proteins following soman intoxication. Toxicology 2011; 290:195-202. [DOI: 10.1016/j.tox.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/29/2022]
|
10
|
RamaRao G, Bhattacharya BK. Multiple signal transduction pathways alterations during nerve agent toxicity. Toxicol Lett 2011; 208:16-22. [PMID: 22001750 DOI: 10.1016/j.toxlet.2011.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 02/06/2023]
Abstract
Nerve agent toxicity is primarily due to the synaptic build up of toxic levels of acetylcholine. The acute lethal effects of the nerve agents are generally attributed to respiratory failure caused by a combination of effects at both central and peripheral levels and are further complicated by copious secretions, muscle fasciculations, and convulsions. In addition to this, a range of non cholinergic effects have been observed. The development of effective treatment to block multiple effects resulting from nerve agent exposure is hampered by a limited understanding of the molecular changes responsible for their persistent effects. Excessive accumulation of acetylcholine leads to activation nicotinic and muscarinic acetylcholine receptors, these receptors activate diverse kind of cellular responses by distinct signaling pathways. Metabolism of cyclic nucleotides, membrane phospholipids, activation of a multitude of protein kinases and the induction of transcription factors are the key biochemical steps and pathways that have been investigated. This review will focus on the effects of nerve agents on signal transduction pathways; particularly, MAP kinases, protein kinase C isozymes, calcium calmodulin dependent protein kinase II (CaMKII) and on cytoskeletal proteins, calpain, and certain transcription factors and discusses how such changes may be involved in nerve agent induced neurotoxicity. Alterations in these key brain proteins could explain the neurological impairments following nerve agent exposure. A better understanding of the whole picture may lead to new pharmacological interventions aimed to improve or modulate those signal transduction pathways affected during nerve agent poisoning or associated pathologies that are responsible for neuronal disturbances.
Collapse
Affiliation(s)
- G RamaRao
- Biochemistry Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P., India.
| | | |
Collapse
|
11
|
The Molecular Toxicology of Chemical Warfare Nerve Agents. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-444-53864-2.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
RamaRao G, Waghmare CK, Srivastava N, Bhattacharya BK. Regional alterations of JNK3 and CaMKIIα subunit expression in the rat brain after soman poisoning. Hum Exp Toxicol 2010; 30:448-59. [DOI: 10.1177/0960327110386814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinases (JNKs) exert numerous and diverse functions in the brain. However, their role in nerve agent poisoning is poorly understood. In the present study, rats were exposed to soman (80 µg/kg) subcutaneously to study the changes in the protein levels of calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and JNK3 and activities of acetylcholinestarase (AChE) and CaMKII in the rat brain. Western blot analysis revealed that significant changes were found in both the protein kinases expression. Immunoreactivity levels of neural specific JNK3 isoform increased from 2.5 hours to 30 days after soman exposure in cerebral cortex, hippocampus, striatum and thalamus regions and decreased in the case of cerebellum. CaMKIIα expression levels were also increased from 2.5 hours to 30 days after soman exposure in cerebral cortex, hippocampus, thalamus and down regulated in cerebellum. AChE activity remained inhibited in plasma and brain up to 3 days post exposure. CaMKII activity was increased in cerebrum and decreased in cerebellum. Results suggest that altered expression of both the protein kinases play a role in nerve agent-induced long-term neurotoxic effects.
Collapse
Affiliation(s)
- G. RamaRao
- Division of Biochemistry, Defense Research and Development Establishment, Gwalior, Madhya Pradesh, India,
| | - CK Waghmare
- Division of Biochemistry, Defense Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - Nalini Srivastava
- Division of Biochemistry, Defense Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | - BK Bhattacharya
- Division of Biochemistry, Defense Research and Development Establishment, Gwalior, Madhya Pradesh, India
| |
Collapse
|
13
|
Everley PA, Dillman JF. Genomics and proteomics in chemical warfare agent research: recent studies and future applications. Toxicol Lett 2010; 198:297-303. [PMID: 20708669 DOI: 10.1016/j.toxlet.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022]
Abstract
Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.
Collapse
Affiliation(s)
- Patrick A Everley
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | | |
Collapse
|