1
|
Sax SN, Gentry PR, Van Landingham C, Clewell HJ, Mundt KA. Extended Analysis and Evidence Integration of Chloroprene as a Human Carcinogen. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:294-318. [PMID: 31524302 PMCID: PMC7028114 DOI: 10.1111/risa.13397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 05/11/2023]
Abstract
β-Chloroprene is used in the production of polychloroprene, a synthetic rubber. In 2010, Environmental Protection Agency (EPA) published the Integrated Risk Information System "Toxicological Review of Chloroprene," concluding that chloroprene was "likely to be carcinogenic to humans." This was based on findings from a 1998 National Toxicology Program (NTP) study showing multiple tumors within and across animal species; results from occupational epidemiological studies; a proposed mutagenic mode of action; and structural similarities with 1,3-butadiene and vinyl chloride. Using mouse data from the NTP study and assuming a mutagenic mode of action, EPA calculated an inhalation unit risk (IUR) for chloroprene of 5 × 10-4 per µg/m3 . This is among the highest IURs for chemicals classified by IARC or EPA as known or probable human carcinogens and orders of magnitude higher than the IURs for carcinogens such as vinyl chloride, benzene, and 1,3-butadiene. Due to differences in pharmacokinetics, mice appear to be uniquely responsive to chloroprene exposure compared to other animals, including humans, which is consistent with the lack of evidence of carcinogenicity in robust occupational epidemiological studies. We evaluated and integrated all lines of evidence for chloroprene carcinogenicity to assess whether the 2010 EPA IUR could be scientifically substantiated. Due to clear interspecies differences in carcinogenic response to chloroprene, we applied a physiologically based pharmacokinetic model for chloroprene to calculate a species-specific internal dose (amount metabolized/gram of lung tissue) and derived an IUR that is over 100-fold lower than the 2010 EPA IUR. Therefore, we recommend that EPA's IUR be updated.
Collapse
|
2
|
Sutherland JH, Holloman WK. Loss of Cohesin Subunit Rec8 Switches Rad51 Mediator Dependence in Resistance to Formaldehyde Toxicity in Ustilago maydis. Genetics 2018; 210:559-572. [PMID: 30082279 PMCID: PMC6216591 DOI: 10.1534/genetics.118.301439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
DNA-protein cross-links (DPCs) are frequently occurring lesions that provoke continual threats to the integrity of the genome by interference with replication and transcription. Reactive aldehydes generated from endogenous metabolic processes or produced in the environment are sources that trigger cross-linking of DNA with associated proteins. DNA repair pathways in place for removing DPCs, or for bypassing them to enable completion of replication, include homologous recombination (HR) and replication fork remodeling (FR) systems. Here, we surveyed a set of mutants defective in known HR and FR components to determine their contribution toward maintaining resistance to chronic formaldehyde (FA) exposure in Ustilago maydis, a fungus that relies on the BRCA2-family member Brh2 as the principal Rad51 mediator in repair of DNA strand breaks. We found that, in addition to Brh2, Rad52 was also vital for resistance to FA. Deleting the gene for Rec8, a kleisin subunit of cohesin, eliminated the requirement for Brh2, but not Rad52, in FA resistance. The Rad51K133R mutant variant that is able to bind DNA but unable to dissociate from it was able to support resistance to FA. These findings suggest a model for DPC repair and tolerance that features a specialized role for Rad52, enabling Rad51 to access DNA in its noncanonical capacity of replication fork protection rather than DNA strand transfer.
Collapse
Affiliation(s)
- Jeanette H Sutherland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
5
|
Yang Y, Himmelstein MW, Clewell HJ. Kinetic modeling of β-chloroprene metabolism: Probabilistic in vitro-in vivo extrapolation of metabolism in the lung, liver and kidneys of mice, rats and humans. Toxicol In Vitro 2012; 26:1047-55. [PMID: 22543297 DOI: 10.1016/j.tiv.2012.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/15/2022]
Abstract
β-Chloroprene (chloroprene) is carcinogenic in inhalation bioassays with B6C3F1 mice and Fischer rats, but the potential effects in humans have not been adequately characterized. In order to provide a better basis for evaluating chloroprene exposures and potential effects in humans, we have explored species and tissue differences in chloroprene metabolism. This study implemented an in vitro-in vivo extrapolation (IVIVE) approach to parameterize a physiologically based pharmacokinetic (PBPK) model for chloroprene and evaluate the influence of species and gender differences in metabolism on target tissue dosimetry. Chloroprene metabolism was determined in vitro using liver, lung and kidney microsomes from male or female mice, rats, and humans. A two compartment PK model was used to estimate metabolism parameters for chloroprene in an in vitro closed vial system, which were then extrapolated to the whole body PBPK model. Two different strategies were used to estimate parameters for the oxidative metabolism of chloroprene: a deterministic point-estimation using the Nelder-Mead nonlinear optimization algorithm and probabilistic Bayesian analysis using the Markov Chain Monte Carlo technique. Target tissue dosimetry (average amount of chloroprene metabolized in lung per day) was simulated with the PBPK model using the in vitro-based metabolism parameters. The model-predicted target tissue dosimetry, as a surrogate for a risk estimate, was similar between the two approaches; however, the latter approach provided a measure of uncertainty in the metabolism parameters and the opportunity to evaluate the impact of that uncertainty on predicted risk estimates.
Collapse
Affiliation(s)
- Yuching Yang
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
7
|
Francis HL, DeMorrow S, Franchitto A, Venter JK, Mancinelli RA, White MA, Meng F, Ueno Y, Carpino G, Renzi A, Baker KK, Shine HE, Francis TC, Gaudio E, Alpini GD, Onori P. Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms. J Transl Med 2012; 92:282-94. [PMID: 22064319 PMCID: PMC3293651 DOI: 10.1038/labinvest.2011.158] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP. We hypothesize that histamine increases biliary growth by activating H1HR on small and H2HR on large cholangiocytes. The expression of H1-H4HRs was evaluated in liver sections, isolated and cultured (normal rat intrahepatic cholangiocyte culture (NRIC)) cholangiocytes. In vivo, normal rats were treated with histamine or H1-H4HR agonists for 1 week. We evaluated: (1) intrahepatic bile duct mass (IBDM); (2) the effects of histamine, H1HR or H2HR agonists on NRIC proliferation, IP(3) and cAMP levels and PKCα and protein kinase A (PKA) phosphorylation; and (3) PKCα silencing on H1HR-stimulated NRIC proliferation. Small and large cholangiocytes express H1-H4HRs. Histamine and the H1HR agonist increased small IBDM, whereas histamine and the H2HR agonist increased large IBDM. H1HR agonists stimulated IP(3) levels, as well as PKCα phosphorylation and NRIC proliferation, whereas H2HR agonists increased cAMP levels, as well as PKA phosphorylation and NRIC proliferation. The H1HR agonist did not increase proliferation in PKCα siRNA-transfected NRICs. The activation of differential signaling mechanisms targeting small and large cholangiocytes is important for repopulation of the biliary epithelium during pathologies affecting different-sized bile ducts.
Collapse
Affiliation(s)
- Heather L Francis
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy,Eleonora Lonillard Spencer Cenci Foundation, Rome, Italy
| | - Julie K Venter
- Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Romina A Mancinelli
- Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy
| | - Mellanie A White
- Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Fanyin Meng
- Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Yoshiyuki Ueno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guido Carpino
- Department Health Science, University of Rome‘Foro Italico’, Italy
| | - Anastasia Renzi
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy
| | - Kimberly K Baker
- Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Hannah E Shine
- Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Taylor C Francis
- Division of Research and Education, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Internal Medicine and Orthopedics Sciences, ‘La Sapienza’, Rome, Italy
| | - Gianfranco D Alpini
- Department of Internal Medicine, Scott and White Digestive Disease Research Center, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division of Gastroenterology, Department of Medicine, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA,Division Research, Central Texas Veterans Health Care System, Scott and White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Paolo Onori
- Department of Experimental Medicine, State University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
8
|
Millard JT, McGowan EE, Bradley SQ. Diepoxybutane interstrand cross-links induce DNA bending. Biochimie 2011; 94:574-7. [PMID: 21839139 DOI: 10.1016/j.biochi.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/26/2011] [Indexed: 12/26/2022]
Abstract
The bifunctional alkylating agent 1,2,3,4-diepoxybutane (DEB) is thought to be a major contributor to the carcinogenicity of 1,3-butadiene, from which it is derived in vivo. DEB forms DNA interstrand cross-links primarily between distal deoxyguanosine residues at the duplex sequence 5'-GNC. In order for the short butanediol tether to span this distance, distortion of the DNA target has been postulated. We determined that the electrophoretic mobility of ligated DNA oligomers containing DEB cross-links was retarded in comparison with control, uncross-linked DNA. Our data are consistent with DNA bending of ∼34° per lesion towards the major groove.
Collapse
Affiliation(s)
- Julie T Millard
- Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901, USA.
| | | | | |
Collapse
|