Molloi S, Berenji GR, Dang TT, Kassab G. Assessment of vasoreactivity using videodensitometry coronary angiography.
Int J Cardiovasc Imaging 2004;
19:271-9. [PMID:
14598895 DOI:
10.1023/a:1025412203223]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND
Previous studies demonstrated that the dysfunction of vasomotor tone (VT) is closely linked to the development of atherosclerosis and it is considered important in the very early stages of atherogenesis. Currently, the evaluation of VT relies on lumen changes in response to vasoactive stimuli using quantitative coronary angiography (QCA) based on geometric edge detection (ED). However, using ED for measuring lumen diameters is inherently associated with large uncertainties. Videodensitometry (VD) methods have important advantages over ED for QCA. The objective of this study was to investigate the reliability of VD and ED techniques in determining the effect of nitroglycerin (NTG) on cross-sectional area (CSA) and volume changes in a swine animal model for evaluating coronary vasoreactivity.
METHODS AND RESULTS
Coronary angiography was performed on four anesthetized swine. CSA and volume were measured in the left anterior descending (LAD) coronary artery using VD before and after intracoronary injection of 0.3 mg of NTG. CSA was also calculated using standard QCA based on ED. The average CSA changes in the proximal, middle and distal branches measured using VD were 23.83% (+/-10.76%), 30.78% (+/-18.39%), and 27.34% (+/-36.53%), respectively. Similarly, the average CSA changes in the proximal, middle, and distal branches measured using ED were 15.02% (+/-36.38%), 22.02% (+/-26.12), and 38.00% (+/-48.31%), respectively. The average lumen volume change measured using VD was 29.79% (+/-14.79%). In order to evaluate the relative reliability of the techniques. the significance of deviation (SOD) was calculated, which is the ratio of the change after NTG and the measurement error. The average SOD for CSA for all the branches based on VD and ED were 1.86 and 0.69, respectively. The SOD for volume measurement was 2.78.
CONCLUSIONS
Lumen changes measured by VD showed substantial improvement in reliability when compared to the ED. Moreover, VD can be used to measure substantially smaller changes in lumen dimension in response to vasoactive stimuli than the standard QCA based on ED. Finally, VD allows the measurement of arterial volume, which is not possible with ED.
Collapse