1
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Inhibition of protein phosphatases attenuates A 1-adenosine receptor-stimulation induced negative inotropic effects of cAMP-increasing agents in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03854-0. [PMID: 39907786 DOI: 10.1007/s00210-025-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
N6-(R)-Phenylisopropyladenosine (R-PIA), an agonist at A1-adenosine receptors, alone exerts negative inotropic effects (NIE) in the human atrium. This NIE is augmented in the presence of cAMP-increasing agonists like phosphodiesterase inhibitors (cilostamide, rolipram) or a direct activator of adenylyl cyclase (forskolin). Cantharidin inhibits protein phosphatases 1 and 2A (PP1, PP2A). We hypothesized that cantharidin would attenuate this NIE of R-PIA in the presence of cilostamide or forskolin. During open heart surgery (patients were suffering from severe coronary heart disease), isolated human atrial preparations (HAP) were obtained. These HAP were mounted in organ baths and electrically stimulated (1 Hz). For comparison, we studied isolated electrically stimulated (1 Hz) left atrial preparations (LA) from wild type mice. We noted that R-PIA exerted negative inotropic effects in LA and HAP in the presence of cilostamide or rolipram and forskolin that were attenuated by cantharidin. We hypothesize that R-PIA in the presence of phosphodiesterase inhibitors or forskolin stimulates PP in the human atrium. Hence, R-PIA acts, at least in part, by stimulating PP in HAP.
Collapse
Affiliation(s)
- Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst Grube Str. 40, 06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle (Saale), Germany.
| |
Collapse
|
2
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin and sodium fluoride attenuate the negative inotropic effect of the A 1-adenosine receptor agonist N 6-(R)-phenylisopropyl adenosine in isolated human atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1961-1971. [PMID: 39212735 PMCID: PMC11825636 DOI: 10.1007/s00210-024-03402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cantharidin and sodium fluoride inhibit the activity of serine/threonine protein phosphatases 1 (PP1) and 2A (PP2A) and increase the force of contraction in human atrial preparations. R-phenylisopropyl adenosine (R-PIA) acts as an agonist at A1-adenosine receptors. R-PIA exerts a negative inotropic effect on human atria. The effect of R-PIA-and its various manifestations-are currently explained as a function of the inhibition of sarcolemmal adenylyl cyclase activity and/or opening of sarcolemmal potassium channels. We hypothesise that cantharidin and sodium fluoride may attenuate the negative inotropic effect of R-PIA. During open heart surgery, trabeculae carneae from the right atrium were obtained for human atrial preparations (HAPs). These trabeculae were mounted in organ baths and electrically stimulated at 1 Hz. Furthermore, we studied isolated electrically stimulated left atrial (LA) preparations from female wild-type mice (CD1). The force of contraction was recorded under isometric conditions. R-PIA (1 µM) exerted a rapid negative inotropic effect in the HAPs and mice LA preparations. These negative inotropic effects of R-PIA were attenuated by pre-incubation for 30 min with 100-µM cantharidin in HAPs, but not in mice LA preparations. Adenosine signals via A1 receptors in a species-specific pathway in mammalian atria. We postulate that R-PIA, at least in part, exerts a negative inotropic effect via activation of serine/threonine phosphatases in the human atrium.
Collapse
Affiliation(s)
- R Schwarz
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - B Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097, Halle, Germany
| | - U Gergs
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - J Neumann
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin and sodium fluoride attenuate the negative inotropic effects of carbachol in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2183-2202. [PMID: 37801145 PMCID: PMC10933163 DOI: 10.1007/s00210-023-02747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Carbachol, an agonist at muscarinic receptors, exerts a negative inotropic effect in human atrium. Carbachol can activate protein phosphatases (PP1 or PP2A). We hypothesized that cantharidin or sodium fluoride, inhibitors of PP1 and PP2A, may attenuate a negative inotropic effect of carbachol. During bypass-surgery trabeculae carneae of human atrial preparations (HAP) were obtained. These trabeculae were mounted in organ baths and electrically stimulated (1 Hz). Force of contraction was measured under isometric conditions. For comparison, we studied isolated electrically stimulated left atrial preparations (LA) from mice. Cantharidin (100 µM) and sodium fluoride (3 mM) increased force of contraction in LA (n = 5-8, p < 0.05) by 113% ± 24.5% and by 100% ± 38.2% and in HAP (n = 13-15, p < 0.05) by 625% ± 169% and by 196% ± 23.5%, respectively. Carbachol (1 µM) alone exerted a rapid transient maximum negative inotropic effect in LA (n = 6) and HAP (n = 14) to 46.9% ± 3.63% and 19.4% ± 3.74%, respectively (p < 0.05). These negative inotropic effects were smaller in LA (n = 4-6) and HAP (n = 9-12) pretreated with 100 µM cantharidin and amounted to 58.0% ± 2.27% and 59.2% ± 6.19% or 3 mM sodium fluoride to 63.7% ± 9.84% and 46.3% ± 5.69%, (p < 0.05). We suggest that carbachol, at least in part, exerts a negative inotropic effect in the human atrium by stimulating the enzymatic activity of PP1 and/or PP2A.
Collapse
Affiliation(s)
- Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
4
|
Genetic disruption of G proteins, G(i2)alpha or G(o)alpha, does not abolish inotropic and chronotropic effects of stimulating muscarinic cholinoceptors in atrium. Br J Pharmacol 2010; 158:1557-64. [PMID: 19906118 DOI: 10.1111/j.1476-5381.2009.00441.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Classically, stimulation of muscarinic cholinoceptors exerts negative inotropic and chronotropic effects in the atrium of mammalian hearts. These effects are crucial to the vagal regulation of the heart beat. This effect is assumed to be mediated via GTP binding (G) proteins, because they can be abolished by Pertussis toxin. However, it is unknown which G proteins are involved. EXPERIMENTAL APPROACH We studied contractility in isolated left or right atrium from genetically manipulated mice with deletion of one of two G proteins, either of the alpha subunit of G(i2) protein (G(i2)alpha) or of the alpha subunit of G(o) protein (G(o)alpha). Preparations were stimulated with carbachol alone or after pretreatment with the beta-adrenoceptor agonist isoprenaline. For comparison, the effects of carbachol on L-type Ca(2+)-channels in isolated ventricular cardiomyocytes were studied. KEY RESULTS The negative inotropic and chronotropic effects of carbachol alone or in the presence of isoprenaline were identical in atria from knockout or wild-type mice. However, the effect of carbachol on isoprenaline-activated L-type Ca(2+)-channel in isolated ventricular cardiomyocytes was greatly attenuated in both types of knockout mice studied. CONCLUSIONS AND IMPLICATIONS These data imply that there is either redundancy of G proteins for signal transduction or that Pertussis toxin-sensitive proteins other than G(i2)alpha and G(o)alpha mediate the vagal stimulation in the atrium. Moreover, different G proteins mediate the effect of carbachol in ventricle compared with atrium.
Collapse
|
5
|
Yang Y, Ke Q, Cai J, Xiao YF, Morgan JP. Evidence for cocaine and methylecgonidine stimulation of M(2) muscarinic receptors in cultured human embryonic lung cells. Br J Pharmacol 2001; 132:451-60. [PMID: 11159694 PMCID: PMC1572570 DOI: 10.1038/sj.bjp.0703819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Muscarinic cholinoceptor stimulation leads to an increase in guanylyl cyclase activity and to a decrease in adenylyl cyclase activity. This study examined the effects of cocaine and methylecgonidine (MEG) on muscarinic receptors by measurement of cyclic GMP and cyclic AMP content in cultured human embryonic lung (HEL299) cells which specifically express M(2) muscarinic receptors. 2. A concentration-dependent increase in cyclic GMP production was observed in HEL299 cells incubated with carbachol, cocaine, or MEG for 24 h. The increase in cyclic GMP content was 3.6 fold for 1 microM carbachol (P < 0.01), 3.1 fold for 1 microM cocaine (P < 0.01), and 7.8 fold for 1 microM MEG (P < 0.001), respectively. This increase in cyclic GMP content was significantly attenuated or abolished by the muscarinic receptor antagonist atropine or the M(2) blocker methoctramine. 3. In contrast, cocaine, MEG, and carbachol produced a significant inhibition of cyclic AMP production in HEL299 cells. Compared to the control, HEL299 cells treated with 1 microM cocaine decreased cyclic AMP production by 30%. MEG and carbachol at 1 microM decreased cyclic AMP production by 37 and 38%, respectively. Atropine or methoctramine at 1 or 10 microM significantly attenuated or abolished the cocaine-induced decrease in cyclic AMP production. However, the antagonists alone had neither an effect on cyclic GMP nor cyclic AMP production. Pretreatment of HEL299 cells with pertussis toxin prevented the cocaine-induced reduction of cyclic AMP production. 4. Western blot analysis showed that HEL299 cells specifically express M(2) muscarinic receptors without detectable M(1) and M(3). Incubation of HEL299 cells with cocaine, carbachol, and atropine did not alter the expression of M(2) protein levels. However, the inducible isoform of nitric oxide synthase (iNOS) was induced in the presence of cocaine or carbachol and this induction was significantly attenuated after addition of atropine or methoctramine. 5. The present data show that cocaine and MEG significantly affect cyclic GMP and cyclic AMP production in cultured HEL299 cells. Our results also show that these effects result from the drug-induced stimulation of M(2) muscarinic receptors accompanied with no alterations of receptor expression. However, the induction of iNOS by cocaine may result in the increase in cyclic GMP production.
Collapse
Affiliation(s)
- Yinke Yang
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, MA 02215, U.S.A
| | - Qingen Ke
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, MA 02215, U.S.A
| | - Jingbo Cai
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, MA 02215, U.S.A
| | - Yong-Fu Xiao
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, MA 02215, U.S.A
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, MA 02215, U.S.A
| | - James P Morgan
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, MA 02215, U.S.A
- Author for correspondence:
| |
Collapse
|
6
|
Narayan P, Mentzer RM, Lasley RD. Phosphatase inhibitor cantharidin blocks adenosine A(1) receptor anti-adrenergic effect in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2000; 278:H1-7. [PMID: 10644577 DOI: 10.1152/ajpheart.2000.278.1.h1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments were performed to examine whether the protein phosphatase inhibitor cantharidin blocks the anti-adrenergic effect of adenosine A(1) receptor stimulation. In electrically stimulated adult rat ventricular myocytes loaded with the intracellular calcium concentration ([Ca(2+)](i)) indicator fluo-3, isoproterenol (10 nM) increased systolic [Ca(2+)](i) by 46%, increased twitch amplitude by 56%, and increased total cellular cAMP content by 140%. The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentlyadenosine (CCPA) reduced isoproterenol-stimulated [Ca(2+)](i) and contractility by 87 and 80%, respectively, but reduced cAMP content by only 18%. Cantharidin had no effects on myocyte [Ca(2+)](i), contractility, or cAMP in the absence or presence of isoproterenol but blocked the effects of CCPA on [Ca(2+)](i) and contractility by approximately 44%. Cantharidin had no effect on CCPA attenuation of isoproterenol-induced increases in cAMP. Pretreatment with CCPA also reduced the increase in contractile parameters produced by the direct cAMP-dependent protein kinase A (PKA) activator 8-bromocAMP. These results suggest that activation of protein phosphatases mediate, in part, the anti-adrenergic effect of adenosine A(1) receptor activation in ventricular myocardium.
Collapse
Affiliation(s)
- P Narayan
- Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.
| | | | | |
Collapse
|
7
|
Huang B, Wang S, Qin D, Boutjdir M, El-Sherif N. Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, G(i) protein, phosphodiesterase, and phosphatases. Circ Res 1999; 85:848-55. [PMID: 10532953 DOI: 10.1161/01.res.85.9.848] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three weeks after myocardial infarction (MI) in the rat, remodeled hypertrophy of noninfarcted myocardium is at its maximum and the heart is in a compensated stage with no evidence of heart failure. Our hemodynamic measurements at this stage showed a slight but insignificant decrease of +dP/dt but a significantly higher left ventricular end-diastolic pressure. To investigate the basis of the diastolic dysfunction, we explored possible defects in the beta-adrenergic receptor-G(s/i) protein-adenylyl cyclase-cAMP-protein kinase A-phosphatase pathway, as well as molecular or functional alterations of sarcoplasmic reticulum Ca(2+)-ATPase and phospholamban (PLB). We found no significant difference in both mRNA and protein levels of sarcoplasmic reticulum Ca(2+)-ATPase and PLB in post-MI left ventricle compared with control. However, the basal levels of both the protein kinase A-phosphorylated site (Ser16) of PLB (p16-PLB) and the calcium/calmodulin-dependent protein kinase-phosphorylated site (Thr17) of PLB (p17-PLB) were decreased by 76% and 51% in post-MI myocytes (P<0.05), respectively. No change was found in the beta-adrenoceptor density, G(salpha) protein level, or adenylyl cyclase activity. Inhibition of phosphodiesterase and G(i) protein by Ro-20-1724 and pertussis toxin, respectively, did not correct the decreased p16-PLB or p17-PLB levels. Stimulation of beta-adrenoceptor or adenylyl cyclase increased both p16-PLB and p17-PLB in post-MI myocytes to the same levels as in sham myocytes, suggesting that decreased p16-PLB and p17-PLB in post-MI myocytes is not due to a decrease in the generation of p16-PLB or p17-PLB. We found that type 1 phosphatase activity was increased by 32% (P<0.05) with no change in phosphatase 2A activity. Okadaic acid, a protein phosphatase inhibitor, significantly increased p16-PLB and p17-PLB levels in post-MI myocytes and partially corrected the prolonged relaxation of the [Ca(2+)](i) transient. In summary, prolonged relaxation of post-MI remodeled myocardium could be explained, in part, by altered basal levels of p16-PLB and p17-PLB caused by increased protein phosphatase 1 activity.
Collapse
Affiliation(s)
- B Huang
- Cardiology Division, Department of Medicine, State University of New York Health Science Center and Veterans Affairs Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|