1
|
Swanepoel CM, Mueller JL. Out with the old, in with the new: Meiotic driving of sex chromosome evolution. Semin Cell Dev Biol 2024; 163:14-21. [PMID: 38664120 PMCID: PMC11351068 DOI: 10.1016/j.semcdb.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024]
Abstract
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Collapse
Affiliation(s)
- Callie M Swanepoel
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Saunders PA, Veyrunes F. Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities. Genes (Basel) 2021; 12:1770. [PMID: 34828376 PMCID: PMC8617835 DOI: 10.3390/genes12111770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Therian mammals have among the oldest and most conserved sex-determining systems known to date. Any deviation from the standard XX/XY mammalian sex chromosome constitution usually leads to sterility or poor fertility, due to the high differentiation and specialization of the X and Y chromosomes. Nevertheless, a handful of rodents harbor so-called unusual sex-determining systems. While in some species, fertile XY females are found, some others have completely lost their Y chromosome. These atypical species have fascinated researchers for over 60 years, and constitute unique natural models for the study of fundamental processes involved in sex determination in mammals and vertebrates. In this article, we review current knowledge of these species, discuss their similarities and differences, and attempt to expose how the study of their exceptional sex-determining systems can further our understanding of general processes involved in sex chromosome and sex determination evolution.
Collapse
Affiliation(s)
- Paul A. Saunders
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS 7000, Australia
| | - Frédéric Veyrunes
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| |
Collapse
|
3
|
Complex Structure of Lasiopodomys mandarinus vinogradovi Sex Chromosomes, Sex Determination, and Intraspecific Autosomal Polymorphism. Genes (Basel) 2020; 11:genes11040374. [PMID: 32235544 PMCID: PMC7230192 DOI: 10.3390/genes11040374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.
Collapse
|
4
|
Fernandes-Freitas I, Milona A, Murphy KG, Dhillo WS, Owen BM. Live Birth in Sex-Reversed XY Mice Lacking the Nuclear Receptor Dax1. Sci Rep 2020; 10:1703. [PMID: 32015477 PMCID: PMC6997165 DOI: 10.1038/s41598-020-58788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
The nuclear hormone receptor Dax1 functions during development as a testes-determining gene. However, the phenotype of male mice lacking Dax1 is strain-dependent due to the background-specific abundance of male-determining Sry gene-transcripts. We hypothesised that inter-individual variation in Sry mRNA-abundance would result in a spectrum of phenotypes even within-strain. We found that while all XY C57BL/6J mice lacking Dax1 presented as phenotypic females, there was a marked inter-individual variability in measures of fertility. Indeed, we report rare occasions where sex-reversed mice had measures of fertility comparable to those in control females. On two occasions, these sex-reversed XY mice were able to give birth to live offspring following mating to stud-males. As such, this work documents within-strain variability in phenotypes of XY mice lacking Dax1, and reports for the first time a complete sex-reversal capable of achieving live birth in these mice.
Collapse
Affiliation(s)
- Isabel Fernandes-Freitas
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Alexandra Milona
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kevin G Murphy
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Waljit S Dhillo
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.
| | - Bryn M Owen
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
O'Neill MJ, O'Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol Ecol 2018; 27:3783-3798. [PMID: 29624756 DOI: 10.1111/mec.14577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.
Collapse
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
6
|
Parma P, Veyrunes F, Pailhoux E. Sex Reversal in Non-Human Placental Mammals. Sex Dev 2016; 10:326-344. [PMID: 27529721 DOI: 10.1159/000448361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/31/2023] Open
Abstract
Gonads are very peculiar organs given their bipotential competence. Indeed, early differentiating genital ridges evolve into either of 2 very distinct organs: the testis or the ovary. Accumulating evidence now demonstrates that both genetic pathways must repress the other in order for the organs to differentiate properly, meaning that if this repression is disrupted or attenuated, the other pathway may completely or partially be expressed, leading to disorders of sex development. Among these disorders are the cases of XY male-to-female and XX female-to-male sex reversals as well as true hermaphrodites, in which there is a discrepancy between the chromosomal and gonadal sex. Here, we review known cases of XY and XX sex reversals described in mammals, focusing mostly on domestic animals where sex reversal pathologies occur and on wild species in which deviations from the usual XX/XY system have been documented.
Collapse
Affiliation(s)
- Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | | | | |
Collapse
|
7
|
Jiménez R, Barrionuevo FJ, Burgos M. Natural exceptions to normal gonad development in mammals. Sex Dev 2012; 7:147-62. [PMID: 22626995 DOI: 10.1159/000338768] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gonads are the only organs with 2 possible developmental pathways, testis or ovary. A consequence of this unique feature is that mutations in genes controlling gonad development give rise not only to gonadal malformation or dysfunction but also to frequent cases of sex reversal, including XY females, XX males and intersexes. Most of our current knowledge on mammalian sex determination, the genetic process by which the gonadal primordia are committed to differentiate as either testes or ovaries, has derived mainly from the study of sex-reversed mice obtained by direct genetic manipulation. However, there are also numerous cases of natural exceptions to normal gonad development which have been described in a variety of mammals, including both domestic and wild species. Here, we review the most relevant cases of: (1) natural, non-induced sex reversal and intersexuality described in laboratory rodents, including Sxr and B6-Y(DOM) mice; (2) sex reversal in domestic animals, including freemartinism in bovids and pigs, XX sex reversal in pigs, goats and dogs, XY sex reversal in the horse, and sex chromosome chimerism and sex reversal in the cat, and (3) sex reversal in wild mammals, including the generalised true hermaphroditism described in talpid moles, XY sex reversal in Akodon, Microtus and Dicrostonyx species, males lacking a Y chromosome and SRY in Ellobius lutescens, the X* chromosome of Myopus schisticolor, and sex chromosome mosaicism and X0 females in Microtus oregoni. These studies are necessary to elucidate particular aspects of mammalian gonad development in some instances and to understand how the genetic mechanisms controlling gonad development have evolved.
Collapse
Affiliation(s)
- R Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Laboratorio 127 CIBM, Centro de Investigación Biomédica, ES–18100 Armilla, Granada, Spain.
| | | | | |
Collapse
|
8
|
Melo-Ferreira J, Alves PC, Rocha J, Ferrand N, Boursot P. Interspecific X-chromosome and mitochondrial DNA introgression in the Iberian hare: selection or allele surfing? Evolution 2011; 65:1956-68. [PMID: 21729051 DOI: 10.1111/j.1558-5646.2011.01261.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introgression from a resident species into an invading one is predicted to occur through the demographic process of "allele surfing," and to particularly affect genomic regions transmitted by the lower migrating sex, such as mtDNA. This could explain that northern Iberian populations of Lepus granatensis harbor high frequencies of mtDNA from L. timidus, an arctic hare it replaced there after deglaciation. We report that variation of introgressed timidus-like mtDNA reflects several predicted effects of this process: increasing frequency and diversity in the direction of expansion, strong perpendicular phylogeographic structure and signs of postglacial demographic growth. However, demographic inferences for the granatensis and timidus-like mtDNA lineages suggest the latter may have outcompeted the former in northern Iberia. Autosomal introgression occurs at low frequencies and species-wide rather than only in the north. If this difference with mtDNA resulted from sex-biased migration, an intermediate pattern should prevail for the X-chromosome, but we report species-wide and high-frequency introgression of an X-fragment. Either selection favored this ubiquitous X-introgression, or more complex postglacial expansion patterns prevailed, with different consequences depending on the genomic and geographic region. This illustrates the difficulty of distinguishing demographic and selective effects and the need for genome and species-wide based demographic models.
Collapse
Affiliation(s)
- José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | | | | | | | | |
Collapse
|
9
|
Veyrunes F, Chevret P, Catalan J, Castiglia R, Watson J, Dobigny G, Robinson TJ, Britton-Davidian J. A novel sex determination system in a close relative of the house mouse. Proc Biol Sci 2009; 277:1049-56. [PMID: 20007182 DOI: 10.1098/rspb.2009.1925] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Therian mammals have an extremely conserved XX/XY sex determination system. A limited number of mammal species have, however, evolved to escape convention and present aberrant sex chromosome complements. In this study, we identified a new case of atypical sex determination in the African pygmy mouse Mus minutoides, a close evolutionary relative of the house mouse. The pygmy mouse is characterized by a very high proportion of XY females (74%, n = 27) from geographically widespread Southern and Eastern African populations. Sequencing of the high mobility group domain of the mammalian sex determining gene Sry, and karyological analyses using fluorescence in situ hybridization and G-banding data, suggest that the sex reversal is most probably not owing to a mutation of Sry, but rather to a chromosomal rearrangement on the X chromosome. In effect, two morphologically different X chromosomes were identified, one of which, designated X*, is invariably associated with sex-reversed females. The asterisk designates the still unknown mutation converting X*Y individuals into females. Although relatively still unexplored, such an atypical sex chromosome system offers a unique opportunity to unravel new genetic interactions involved in the initiation of sex determination in mammals.
Collapse
Affiliation(s)
- Frederic Veyrunes
- Institut des Sciences de l'Evolution (UMR CNRS/Université Montpellier II), Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ortiz MI, Pinna-Senn E, Dalmasso G, Lisanti JA. Chromosomal aspects and inheritance of the XY female condition in Akodon azarae (Rodentia, Sigmodontinae). Mamm Biol 2009. [DOI: 10.1016/j.mambio.2008.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Dumic M, Lin-Su K, Leibel NI, Ciglar S, Vinci G, Lasan R, Nimkarn S, Wilson JD, McElreavey K, New MI. Report of fertility in a woman with a predominantly 46,XY karyotype in a family with multiple disorders of sexual development. J Clin Endocrinol Metab 2008; 93:182-9. [PMID: 18000096 PMCID: PMC2190741 DOI: 10.1210/jc.2007-2155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT We report herein a remarkable family in which the mother of a woman with 46,XY complete gonadal dysgenesis was found to have a 46,XY karyotype in peripheral lymphocytes, mosaicism in cultured skin fibroblasts (80% 46,XY and 20% 45,X) and a predominantly 46,XY karyotype in the ovary (93% 46,XY and 6% 45,X). PATIENTS A 46,XY mother who developed as a normal woman underwent spontaneous puberty, reached menarche, menstruated regularly, experienced two unassisted pregnancies, and gave birth to a 46,XY daughter with complete gonadal dysgenesis. RESULTS Evaluation of the Y chromosome in the daughter and both parents revealed that the daughter inherited her Y chromosome from her father. Molecular analysis of the genes SOX9, SF1, DMRT1, DMRT3, TSPYL, BPESC1, DHH, WNT4, SRY, and DAX1 revealed normal male coding sequences in both the mother and daughter. An extensive family pedigree across four generations revealed multiple other family members with ambiguous genitalia and infertility in both phenotypic males and females, and the mode of inheritance of the phenotype was strongly suggestive of X-linkage. CONCLUSIONS The range of phenotypes observed in this unique family suggests that there may be transmission of a mutation in a novel sex-determining gene or in a gene that predisposes to chromosomal mosaicism.
Collapse
Affiliation(s)
- Miroslav Dumic
- Department of Pediatric Endocrinology and Diabetes, University Hospital Rebro, Zagreb, Croatia 41000
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vuorinen JA, Eskelinen O. Long-term stability of allozyme frequencies in a wood lemming, Myopus schisticolor, population with a biased sex ratio and density fluctuations. Heredity (Edinb) 2005; 94:443-7. [PMID: 15674383 DOI: 10.1038/sj.hdy.6800639] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Wood lemming (Myopus schisticolor) populations are characterized by female biased sex ratios and cyclic variations in population size. Both of these characteristics are assumed to reduce genetic variation and thus affect the evolutionary adaptation of the species. We addressed these questions by studying the genetic structure of a wood lemming population from eastern Finland by isozyme markers during a 21-year period, which corresponds to 40-50 generations. Contingency tests showed that genotypic proportions conformed to Hardy-Weinberg equilibrium in each of the four sampling years. Among the temporal replicates, allele frequencies differed most by 0.14 and were not significant. Genetic variation was also stable and fairly high with a mean observed heterozygosity of H = 0.057. Variability in the Heinavesi population was higher than previously reported in wood lemming. The difference was mainly caused by variation at a phosphoglucomutase locus that was monomorphic in earlier studies. Significant linkage disequilibrium was observed in three of the comparisons but the disequilibrium did not appear consistently in all years. This pattern was also evidenced by the variance components, which indicated that selection favoured for specific allele pairs only in few subsamples.
Collapse
Affiliation(s)
- J A Vuorinen
- Department of Biology, University of Joensuu, PO Box 111, FIN-80101 Joensuu, Finland.
| | | |
Collapse
|
13
|
Liu WS, Nordqvist K, Lau YF, Fredga K. Characterization of the Xp21-23 region in the wood lemming, a region involved in XY sex reversal. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:551-7. [PMID: 11748603 DOI: 10.1002/jez.1105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The wood lemming (Myopus schisticolor) harbors two types of X chromosome, a normal X and a variant X, designated X*. The X* chromosome contains a mutation that causes XY sex reversal. We have previously demonstrated that the Xp21-23 region is deleted from X* and is associated with XY sex reversal. To further analyze the deleted region, we have constructed and characterized seven X chromosome- and region-specific recombinant DNA libraries. Further, we have screened mouse fetal gonad cDNA libraries with the microdissected Xp21-23 DNA as a probe in an attempt to identify homologous and expressed sequences from the deletion. Fourteen positive clones were isolated, and sequence analyses showed that ten of these contained identical sequences homologous to mouse gamma-satellite sequences. One of the remaining four was perfectly homologous to the mouse gene Ccth (chaperonin containing t-complex polypeptide 1, eta subunit). Southern blot indicated that the Ccth cDNA was located on the X chromosome, not deleted from the X* but closely linked to the deletion region. Although the role of the Ccth containing region in sex determination of the wood lemming requires additional studies, the isolation of the mouse Ccth gene by the deletion Xp21-23 probe could be important since this gene is mainly expressed in testis.
Collapse
Affiliation(s)
- W S Liu
- Department of Conservation Biology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| | | | | | | |
Collapse
|
14
|
Akhverdyan M, Fredga K. EM studies of female meiosis in wood lemmings with different sex chromosome constitutions. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:504-16. [PMID: 11555858 DOI: 10.1002/jez.1094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The chromosomes were studied throughout meiotic prophase by electron microscopy of surface-spread oocytes from one XX, four X*X, and three X*Y female wood lemmings, Myopus schisticolor. The X* chromosome had originated from X by a deletion and an inversion in the short arm. The deletion was confirmed in pachytene cells from X*X females; a D-loop was present in the sex bivalent in 16.8% of the cells, and asynapsis of unequal ends was seen in 9.1% of other cells. At late pachytene the D-loop underwent synaptic adjustment. The breakpoints of the deletion are in G-light bands. No inversion loop was seen, which also is in agreement with Ashley's ('88) hypothesis; at least one of the presumed breakpoints of the inversion is in G-dark chromatin. Various types of synaptic abnormalities, such as nonhomologous pairing (triple pairing, interchange, self-synapsis), univalents, foldbacks, and broken lateral elements, were encountered in all types of female. X*Y females showed a high frequency of abnormal oocytes (70.7%), which significantly exceeded that of X*X (23.1%) and XX (8.1%). Univalents were particularly common in the X*Y females. J. Exp. Zool. 290:504-516, 2001.
Collapse
Affiliation(s)
- M Akhverdyan
- Department of Conservation Biology and Genetics, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | | |
Collapse
|
15
|
Liu WS, Fredga K. Telomeric (TTAGGG)n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming. Chromosome Res 1999; 7:235-40. [PMID: 10421383 DOI: 10.1023/a:1009255517764] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of the (TTAGGG)n telomeric sequence was studied in chromosomes of the wood lemming, Myopus schisticolor, by fluorescence in-situ hybridization. As expected, the hybridization signals were observed at telomeres of all chromosomes. However, quite a number of interstitial telomeric sites were present in the pericentric heterochromatic regions. Consistent strong hybridization signals were also seen at one terminus of chromosomes 5, 7 and 12--15. By post-hybridization G-banding and silver-staining, the large blocks of the telomeric sequences on chromosomes 5 and 12 were localized to nucleolus organizer regions (NORs).
Collapse
Affiliation(s)
- W S Liu
- Department of Conservation Biology and Genetics, Uppsala University, Uppsala Genetic Centre, Sweden.
| | | |
Collapse
|