1
|
Tachow A, Thoungseabyoun W, Phuapittayalert L, Petcharat K, Sakagami H, Kondo H, Hipkaeo W. Co-localization of endogenous Arf6 and its activator EFA6D in the granular convoluted tubule cells of mouse submandibular glands under normal conditions and when stimulated by isoproterenol, noradrenaline and carbachol. Arch Oral Biol 2017. [PMID: 28645101 DOI: 10.1016/j.archoralbio.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study proposed to investigate the localization at light and electron microscopic levels of Arf6 and its activator EFA6D in the mouse submandibular gland (SMG) under normal conditions and when stimulated by adrenergic or cholinergic agonists. MATERIALS AND METHODS SMGs of male adult mice were utilized for immunoblotting and immuno-light and -electron microscopic analyses. Isoproterenol and noradrenalin were used as adrenergics, while carbachol was used for the cholinergic stimulant. SMGs were examined at 15, 30, 60 and 120min after intraperitoneal injection of these agents. RESULTS Immunoreactivities for both Arf6 and its activator EFA6D were similarly intense in the basolateral domain of GCTs, but no significant immunoreactivities were seen in the apical domain of GCT cells or any domain of acinar cells under normal conditions. In immuno-electron microscopy, the immunoreactive materials were mainly deposited on the basolateral plasma membranes and subjacent cytoplasm. Shortly after injection of isoproterenol and noradrenaline, but not carbachol, the immunoreactivities for both molecules were additionally seen on the apical plasmalemma of most, if not all, GCT cells, but not acinar cells. CONCLUSION The present findings suggest that the direct involvement of Arf6/EFA6D in regulatory exocytosis at the apical plasma membrane of acinar and GCT cells is apparently to be smaller, if present, than that of endocytosis at the basolateral membranes of GCT cells under normal conditions. This also suggests that the two molecules function additionally at the apical membrane of GCT cells for modulation of saliva secretion under β-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Apussara Tachow
- Nanomorphology-Based Apply Research Group & Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wipawee Thoungseabyoun
- Nanomorphology-Based Apply Research Group & Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Kanoktip Petcharat
- Biochemistry and Nutrition, School of Medical Science, University of Phayao, Phayao, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Tokyo, Japan
| | - Hisatake Kondo
- Nanomorphology-Based Apply Research Group & Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Nanomorphology-Based Apply Research Group & Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
2
|
Namkoong E, Shin YH, Bae JS, Choi S, Kim M, Kim N, Hwang SM, Park K. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands. PLoS One 2015; 10:e0138368. [PMID: 26375462 PMCID: PMC4573515 DOI: 10.1371/journal.pone.0138368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/28/2015] [Indexed: 01/16/2023] Open
Abstract
Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.
Collapse
Affiliation(s)
- Eun Namkoong
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Jun-Seok Bae
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Seulki Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Nahyun Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Sung-Min Hwang
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, 110-749, Korea
| |
Collapse
|
3
|
Sahara Y, Horie S, Fukami H, Goto-Matsumoto N, Nakanishi-Matsui M. Functional roles of V-ATPase in the salivary gland. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Bae JS, Koo NY, Namkoong E, Davies AJ, Choi SK, Shin Y, Jin M, Hwang SM, Mikoshiba K, Park K. Chaperone stress 70 protein (STCH) binds and regulates two acid/base transporters NBCe1-B and NHE1. J Biol Chem 2013; 288:6295-305. [PMID: 23303189 DOI: 10.1074/jbc.m112.392001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96-440) region. Co-injection of STCH and NBCe1-B cRNA into Xenopus oocytes significantly increased surface expression of NBCe1-B and enhanced bicarbonate conductance compared with NBCe1-B cRNA alone. STCH siRNA decreased the rate of Na(+)-dependent pHi recovery from NH4(+) pulse-induced acidification in an HSG (human submandibular gland ductal) cell line. We observed that in addition to NBCe1-B, Na(+)/H(+) exchanger (NHE)-dependent pHi recovery was also impaired by STCH siRNA and further confirmed the interaction of STCH with NHE1 but not plasma membrane Ca(2+) ATPase. Both NBCe1-B and NHE1 interactions were dependent on a specific 45-amino acid region of STCH. In conclusion, we identify a novel role of STCH in the regulation of pHi through site-specific interactions with NBCe1-B and NHE1 and subsequent modulation of membrane transporter expression. We propose STCH may play a role in pHi regulation at times of cellular stress by enhancing the recovery from intracellular acidification.
Collapse
Affiliation(s)
- Jun-Seok Bae
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Everaert N, Willemsen H, Willems E, Franssens L, Decuypere E. Acid–base regulation during embryonic development in amniotes, with particular reference to birds. Respir Physiol Neurobiol 2011; 178:118-28. [DOI: 10.1016/j.resp.2011.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/28/2022]
|
6
|
Oehlke O, Martin HW, Osterberg N, Roussa E. Rab11b and its effector Rip11 regulate the acidosis-induced traffic of V-ATPase in salivary ducts. J Cell Physiol 2010; 226:638-51. [DOI: 10.1002/jcp.22388] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Roussa E. Channels and transporters in salivary glands. Cell Tissue Res 2010; 343:263-87. [PMID: 21120532 DOI: 10.1007/s00441-010-1089-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/03/2010] [Indexed: 01/04/2023]
Abstract
According to the two-stage hypothesis, primary saliva, a NaCl-rich plasma-like isotonic fluid is secreted by salivary acinar cells and its ionic composition becomes modified in the duct system. The ducts secrete K(+) and HCO (3) (-) and reabsorb Na(+) and Cl(-) without any water movement, thus establishing a hypotonic final saliva. Salivary secretion depends on the coordinated action of several channels and transporters localized in the apical and basolateral membrane of acinar and duct cells. Early functional studies in perfused glands, followed by the molecular cloning of several transport proteins and the subsequent analysis of mutant mice, have greatly contributed to our understanding of salivary fluid and the electrolyte secretion process. With a few exceptions, most of the key channels and transporters involved in salivary secretion have now been identified and characterized. However, the picture that has emerged from all these studies is one of a complex molecular network characterized by redundancy for several transport proteins, compensatory mechanisms, and adaptive changes in health and disease. Current research is directed to the molecular interactions between the determinants and the ways in which they are regulated by extracellular signals and intracellular mediators. This review focuses on the functionally and molecularly best-characterized channels and transporters that are considered to be involved in transepithelial fluid and electrolyte transport in salivary glands.
Collapse
Affiliation(s)
- Eleni Roussa
- Anatomy and Cell Biology II, Department of Molecular Embryology, Albert Ludwigs University Freiburg, 79104, Freiburg i. Br., Germany.
| |
Collapse
|
8
|
The chick chorioallantoic membrane: a model of molecular, structural, and functional adaptation to transepithelial ion transport and barrier function during embryonic development. J Biomed Biotechnol 2010; 2010:940741. [PMID: 20339524 PMCID: PMC2842975 DOI: 10.1155/2010/940741] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/16/2009] [Accepted: 01/06/2010] [Indexed: 11/17/2022] Open
Abstract
The chick chorioallantoic membrane is a very simple extraembryonic membrane which serves multiple functions during embryo development; it is the site of exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and H(2)O reabsorption from the allantoic fluid. All these functions are accomplished by its epithelia, the chorionic and the allantoic epithelium, by differentiation of a wide range of structural and molecular peculiarities which make them highly specialized, ion transporting epithelia. Studying the different aspects of such a developmental strategy emphasizes the functional potential of the epithelium and offers an excellent model system to gain insights into questions partly still unresolved.
Collapse
|
9
|
|
10
|
Shahidullah M, To CH, Pelis RM, Delamere NA. Studies on bicarbonate transporters and carbonic anhydrase in porcine nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci 2008; 50:1791-800. [PMID: 19011010 DOI: 10.1167/iovs.08-2487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Bicarbonate transport plays a role in aqueous humor (AH) secretion. The authors examined bicarbonate transport mechanisms and carbonic anhydrase (CA) in porcine nonpigmented ciliary epithelium (NPE). METHODS Cytoplasmic pH (pH(i)) was measured in cultured porcine NPE loaded with BCECF. Anion exchanger (AE), sodium bicarbonate cotransporter (NBC), and CA were examined by RT-PCR and immunolocalization. AH secretion was measured in the intact porcine eye using a fluorescein dilution technique. RESULTS Anion exchanger AE2, CAII, and CAIV were abundant in the NPE layer. In cultured NPE superfused with a CO(2)/HCO(3)(-)-free HEPES buffer, exposure to a CO(2)/HCO(3)(-)-containing buffer caused rapid acidification followed by a gradual increase in pH(i). Subsequent removal of CO(2)/HCO(3)(-) with HEPES buffer caused rapid alkalinization followed by a gradual decrease in pH(i). The rate of gradual alkalinization after the addition of HCO(3)(-)/CO(2) was inhibited by sodium-free conditions, DIDS, and the CA inhibitors acetazolamide and methazolamide but not by the Na-H exchange inhibitor dimethylamiloride or low-chloride buffer. The phase of gradual acidification after removal of HCO(3)(-)/CO(2) was inhibited by DIDS, acetazolamide, methazolamide, and low-chloride buffer. DIDS reduced baseline pH(i). In the intact eye, DIDS and acetazolamide reduced AH secretion by 25% and 44%, respectively. CONCLUSIONS The results suggest the NPE uses a Na(+)-HCO(3)(-) cotransporter to import bicarbonate and a Cl(-)/HCO(3)(-) exchanger to export bicarbonate. CA influences the rate of bicarbonate transport. AE2, CAII, and CAIV are enriched in the NPE layer of the ciliary body, and their coordinated function may contribute to AH secretion by effecting bicarbonate transport into the eye.
Collapse
|
11
|
Heitzmann D, Warth R. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 2008; 88:1119-82. [PMID: 18626068 DOI: 10.1152/physrev.00020.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cells of the gastrointestinal tract are an important barrier between the "milieu interne" and the luminal content of the gut. They perform transport of nutrients, salts, and water, which is essential for the maintenance of body homeostasis. In these epithelia, a variety of K(+) channels are expressed, allowing adaptation to different needs. This review provides an overview of the current literature that has led to a better understanding of the multifaceted function of gastrointestinal K(+) channels, thereby shedding light on pathophysiological implications of impaired channel function. For instance, in gastric mucosa, K(+) channel function is a prerequisite for acid secretion of parietal cells. In epithelial cells of small intestine, K(+) channels provide the driving force for electrogenic transport processes across the plasma membrane, and they are involved in cell volume regulation. Fine tuning of salt and water transport and of K(+) homeostasis occurs in colonic epithelia cells, where K(+) channels are involved in secretory and reabsorptive processes. Furthermore, there is growing evidence for changes in epithelial K(+) channel expression during cell proliferation, differentiation, apoptosis, and, under pathological conditions, carcinogenesis. In the future, integrative approaches using functional and postgenomic/proteomic techniques will help us to gain comprehensive insights into the role of K(+) channels of the gastrointestinal tract.
Collapse
Affiliation(s)
- Dirk Heitzmann
- Institute of Physiology and Clinic and Policlinic for Internal Medicine II, Regensburg, Germany
| | | |
Collapse
|
12
|
Brandes A, Oehlke O, Schümann A, Heidrich S, Thévenod F, Roussa E. Adaptive redistribution of NBCe1-A and NBCe1-B in rat kidney proximal tubule and striated ducts of salivary glands during acid-base disturbances. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2400-11. [PMID: 17855492 DOI: 10.1152/ajpregu.00208.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cellular distribution of the NH2-terminal electrogenic Na+-HCO3(-) cotransporter (NBCe1) variants NBCe1-A and NBCe1-B has been investigated in rat kidney and submandibular gland (SMG) under physiological conditions and after systemic acid-base perturbations. Moreover, the in vivo data were complemented in vitro by using an immortalized cell line derived from the S1 segment of the proximal tubule (PT) of normotensive Wistar-Kyoto rats (WKPT-0293 Cl.2). NBCe1-A was basolaterally localized in PT cells, whereas NBCe1-B exhibited intracellular and basolateral distribution. SMG showed transcript and protein expression for NBCe1-A and NBCe1-B. NBCe1-B was basolaterally localized in duct cells; NBCe1-A was found intracellularly in salivary striated ducts and apically in main duct cells. Acute metabolic acidosis significantly increased cells that showed basolateral NBCe1-A in the PT, indicating increased HCO3(-) reabsorption, and significantly decreased cells that exhibited basolateral NBCe1-B in the salivary ducts, suggesting decreased HCO3(-) secretion. Chronic acidosis had no effect on NBCe1 distribution in PT but significantly increased the percentage of cells with basolateral NBCe1-A in salivary striated duct cells, suggesting increased HCO3(-) reabsorption. In contrast, chronic alkalosis caused adaptive redistribution of NBCe1-A and NBCe1-B in renal PT, favoring decreased HCO3(-) reabsorption. In vitro, WKPT-0293 Cl.2 cells expressed key acid-base transporters. Extracellular alkalosis downregulated NBCe1-A protein. WKPT-0293 Cl.2 cells are therefore a useful model to study renal acid-base regulation in vitro. The results propose redistribution of the transporters as a potential posttranslational regulation modus during acid-base disturbances. Moreover, the data demonstrate that renal PT and salivary duct epithelia respond to acid-base disturbances by an opposite redistribution pattern for NBCe1-A and NBCe1-B, reflecting specialized functions as the HCO3(-)-reabsorbing and HCO3(-)-secreting epithelium, respectively.
Collapse
Affiliation(s)
- Alena Brandes
- Center for Anatomy, Dept. of Neuroanatomy, Univ. of Goettingen, Kreuzbergring 36, D-37075 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Li J, Koo NY, Cho IH, Kwon TH, Choi SY, Lee SJ, Oh SB, Kim JS, Park K. Expression of the Na+-HCO3- cotransporter and its role in pHi regulation in guinea pig salivary glands. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1031-40. [PMID: 16782694 DOI: 10.1152/ajpgi.00483.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Patterns of salivary HCO(3)(-) secretion vary and depend on species and gland types. However, the identities of the transporters involved in HCO(3)(-) transport and the underlying mechanism of intracellular pH (pH(i)) regulation in salivary glands still remain unclear. In this study, we examined the expression of the Na(+)-HCO(3)(-) cotransporter (NBC) and its role in pH(i) regulation in guinea pig salivary glands, which can serve as an experimental model to study HCO(3)(-) transport in human salivary glands. RT-PCR, immunohistochemistry, and pH(i) measurements from BCECF-AM-loaded cells were performed. The amiloride-sensitive Na(+)/H(+) exchanger (NHE) played a putative role in pH(i) regulation in salivary acinar cells and also appeared to be involved in regulation in salivary ducts. In addition to NHE, NBC also played a role in pH(i) regulation in both acini and ducts. In the parotid gland, NBC1 was functionally expressed in the basolateral membrane (BLM) of acinar cells and the luminal membrane (LM) of ducts. In the submandibular gland, NBC1 was expressed only in the BLM of ducts. NBC1 expressed in these two types of salivary glands takes up HCO(3)(-) and is involved in pH(i) regulation. Although NBC3 immunoreactivity was also detected in submandibular gland acinar cells and in the ducts of both glands, it is unlikely that NBC3 plays any role in pH(i) regulation. We conclude that NBC1 is functionally expressed and plays a role in pH(i) regulation in guinea pig salivary glands but that its localization and role are different depending on the type of salivary glands.
Collapse
Affiliation(s)
- Jingchao Li
- Department of Physiology, College of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li J, Lee S, Choi SY, Lee SJ, Oh SB, Lee JH, Chung SC, Kim JS, Lee JH, Park K. Effects of pilocarpine on the secretory acinar cells in human submandibular glands. Life Sci 2006; 79:2441-7. [PMID: 16949105 DOI: 10.1016/j.lfs.2006.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/03/2006] [Accepted: 08/11/2006] [Indexed: 11/18/2022]
Abstract
Pilocarpine has been used as a choice of drugs for treatment of impaired salivary flow. Although considerable data are available as to the stimulatory effect of pilocarpine on the salivary secretion in human, its underlying mechanism, at the cellular level, has not been rigorously studied. In this experiment, we studied the effect of pilocarpine on the ion channel activity, cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and aquaporin (AQP)-5 expression, which play key roles in the secretary process and determine the capacity of fluid secretion. In human submandibular gland (SMG) acinar cells, 10(-5) M pilocarpine activated the outward rectifying-current, which was predominantly K(+) selective in the whole cell patch clamp study. The pilocarpine increased [Ca(2+)](i) in a concentration-dependent manner in the range of 10(-6) M to 10(-4) M. We found that both increases of [Ca(2+)](i) and outward rectifying- K(+) current were inhibited by 10(-5) M U-73122, a specific phospholipase C inhibitor. The magnitudes of pilocarpine-induced [Ca(2+)](i) transients were approximately 55% lower than those with the same concentration of carbachol (CCh). Pilocarpine also increased the amount of AQP-5 protein in the apical membrane (APM) in human SMG acinar cells. Our results suggest that pilocarpine induce salivary secretions in human by activating K(+) channels, increasing [Ca(2+)](i) via phospholipase C dependent pathway, and increasing AQP-5 protein expression in the APM of SMG acinar cells.
Collapse
Affiliation(s)
- Jinchao Li
- Department of Physiology, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Oehlke O, Sprysch P, Rickmann M, Roussa E. Na+/H+ exchanger isoforms are differentially regulated in rat submandibular gland during acid/base disturbances in vivo. Cell Tissue Res 2005; 323:253-62. [PMID: 16158325 DOI: 10.1007/s00441-005-0055-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 07/18/2005] [Indexed: 11/25/2022]
Abstract
Acute metabolic acidosis and alkalosis cause a series of homeostatic adaptive responses in the kidney and other epithelia. We hypothesized that acid/base disturbances might affect the expression of Na(+)/H(+) exchanger (NHE) isoforms in salivary glands and determined the expression and cellular distribution of NHE3 and NHE4 in rat submandibular glands of controls and after imposed acute or chronic metabolic acidosis or alkalosis in vivo. Reverse transcription/polymerase chain reaction, in situ hybridization, and immunohistochemistry were applied by using specific primers, antisense probes, and antibodies, respectively. The results showed NHE3 and NHE4 transcript expression and protein abundance in rat submandibular gland. NHE3 was apically localized in duct cells, whereas NHE4 was found basolaterally distributed in acinar and duct cells. Acute acidosis and alkalosis and chronic acidosis had no effect on NHE3 and NHE4 expression and localization. In contrast, chronic metabolic alkalosis significantly decreased the number of apically stained NHE3 duct cells but had no effect on NHE3 mRNA expression. The results demonstrate, for the first time, the presence of NHE4 protein in salivary glands. The data also indicate the distinct regulation and adaptive changes of different isoforms of the same transporter in rat submandibular gland as a response to acid/base disturbances.
Collapse
Affiliation(s)
- Oliver Oehlke
- Center for Anatomy, Department of Neuroanatomy, Georg August University, Kreuzbergring 36, 37075 Goettingen, Germany
| | | | | | | |
Collapse
|
16
|
Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 2005; 67:445-69. [PMID: 15709965 DOI: 10.1146/annurev.physiol.67.041703.084745] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple water and ion transporter and channel proteins. Notably, all the key transporter and channel proteins in this process appear to be activated, or are up-regulated, by an increase in the intracellular Ca2+ concentration ([Ca2+]i). Consequently, salivation occurs in response to agonists that generate an increase in [Ca2+]i. The mechanisms that act to modulate these increases in [Ca2+]i obviously influence the secretion of salivary fluid. Such modulation may involve effects on mechanisms of both Ca2+ release and Ca2+ entry and the resulting spatial and temporal aspects of the [Ca2+]i signal, as well as interactions with other signaling pathways in the cells. The molecular cloning of many of the transporter and regulatory molecules involved in fluid and electrolyte secretion has yielded a better understanding of this process at the cellular level. The subsequent characterization of mice with null mutations in many of these genes has demonstrated the physiological roles of individual proteins. This review focuses on recent developments in determining the molecular identification of the proteins that regulate the fluid secretion process.
Collapse
Affiliation(s)
- James E Melvin
- The Center for Oral Biology in the Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA.
| | | | | | | |
Collapse
|