1
|
Nagao K, Tanaka Y, Kajitani R, Toyoda A, Itoh T, Kubota S, Goto Y. Bioinformatic and fine-scale chromosomal mapping reveal the nature and evolution of eliminated chromosomes in the Japanese hagfish, Eptatretus burgeri, through analysis of repetitive DNA families. PLoS One 2023; 18:e0286941. [PMID: 37639389 PMCID: PMC10461843 DOI: 10.1371/journal.pone.0286941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.
Collapse
Affiliation(s)
- Kohei Nagao
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoshiki Tanaka
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Souichirou Kubota
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yuji Goto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
2
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
3
|
Novel selectively amplified DNA sequences in the germline genome of the Japanese hagfish, Eptatretus burgeri. Sci Rep 2022; 12:21373. [PMID: 36494570 PMCID: PMC9734144 DOI: 10.1038/s41598-022-26007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In the Japanese hagfish Eptatretus burgeri, 16 chromosomes (eliminated [E]-chromosomes) have been lost in somatic cells (2n = 36), which is equivalent to approx. 21% of the genomic DNA in germ cells (2n = 52). At least seven of the 12 eliminated repetitive DNA families isolated in eight hagfish species were selectively amplified in the germline genome of this species. One of them, EEEb1 (eliminated element of E. burgeri 1) is exclusively localized on all E-chromosomes. Herein, we identified four novel eliminated repetitive DNA families (named EEEb3-6) through PCR amplification and suppressive subtractive hybridization (SSH) combined with Southern-blot hybridization. EEEb3 was mosaic for 5S rDNA and SINE elements. EEEb4 was GC-rich repeats and has one pair of direct and inverted repeats, whereas EEEb5 and EEEb6 were AT-rich repeats with one pair and two pairs of sub-repeats, respectively. Interestingly, all repeat classes except EEEb3 were transcribed in the testes, although no open reading frames (ORF) were identified. We conducted fluorescence in situ hybridization (FISH) to examine the chromosomal localizations of EEEb3-6 and EEEb2, which was previously isolated from the germline genome of E. burgeri. All sequences were only found on all EEEb1-positive E-chromosomes. Copy number estimation of the repeated elements by slot-blot hybridization revealed that (i) the EEEb1-6 family members occupied 39.9% of the total eliminated DNA, and (ii) a small number of repeats were retained in somatic cells, suggesting that there is incomplete elimination of the repeated elements. These results provide new insights into the mechanisms involved in the chromosome elimination and the evolution of E-chromosomes.
Collapse
|
4
|
Frost CR, Goss GG. Absence of some cytochrome P450 (CYP) and hydroxysteroid dehydrogenase (HSD) enzymes in hagfishes. Gen Comp Endocrinol 2022; 323-324:114045. [PMID: 35472318 DOI: 10.1016/j.ygcen.2022.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
Corticosteroids are synthesized from cholesterol by steroidogenic enzyme catalysts belonging to two main families: the cytochrome p450s (CYPs) and hydroxysteroid dehydrogenases (HSDs). The action of these steroidogenic enzymes allows the genesis of the terminal active corticosteroids 11-deoxycortisol (S), 1ɑ-hydroxycorticosterone (1α-OH-B), or cortisol in different fish species. However, for Cyclostomes like hagfishes, the terminal corticosteroid is still undefined. In this study, we examined the presence or absence of CYPs and HSDs as traits in fishes to gain insight about the primary corticosteroid synthesis pathways of the hagfishes. We used published cytochrome c oxidase I (COXI) amino acid sequences to construct a phylogeny of fishes and then mapped the CYPs and HSDs as morphological traits onto the tree to predict the ancestral character states through ancestral character reconstruction (ACR). There is a clear phylogenetic signal for CYP (i.e., CYP11a1, 17, 21, and 11b) and HSD (i.e., 11-βHSD and 3β-HSD) derivatives of interest throughout the more derived fishes. Using trait-based ACR, we also found that hagfishes possess genes for 3β-HSD, CYP11a1, CYP17, and CYP21. Importantly, the presence of CYP21 implies that hagfish can synthesize 11-deoxycorticosterone (11-DOC) and S. Previous research demonstrated that despite hagfish having CYP21, neither 11-DOC nor S could be detected in hagfish. This discrepancy between the presence of steroidogenic enzymes and products brings into question the expression and/or function of CYP21 in hagfishes.
Collapse
Affiliation(s)
- Christiana R Frost
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
5
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
6
|
Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans 2021; 49:1891-1903. [PMID: 34665225 DOI: 10.1042/bst20190951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.
Collapse
|
7
|
Abstract
Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| | | | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| |
Collapse
|
8
|
Characterization and Evolution of Germ1, an Element that Undergoes Diminution in Lampreys (Cyclostomata: Petromyzontidae). J Mol Evol 2019; 87:298-308. [PMID: 31486871 DOI: 10.1007/s00239-019-09909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
The sea lamprey (Petromyzon marinus) undergoes substantial genomic alterations during embryogenesis in which specific sequences are deleted from the genome of somatic cells yet retained in cells of the germ line. One element that undergoes diminution in P. marinus is Germ1, which consists of a somatically rare (SR) region and a fragment of 28S rDNA. Although the SR-region has been used as a marker for genomic alterations in lampreys, the evolutionary significance of its diminution is unknown. We examined the Germ1 element in five additional species of lamprey to better understand its evolutionary significance. Each representative species contained sequences similar enough to the Germ1 element of P. marinus to be detected via PCR and Southern hybridizations, although the SR-regions of Lampetra aepyptera and Lethenteron appendix are quite divergent from the homologous sequences of Petromyzon and three species of Ichthyomyzon. Lamprey Germ1 sequences have a number of features characteristic of the R2 retrotransposon, a mobile element that specifically targets 28S rDNA. Phylogenetic analyses of the SR-regions revealed patterns generally consistent with relationships among the species included in our study, although the 28S-fragments of each species/genus were most closely related to its own functional rDNA, suggesting that the two components of Germ1 were assembled independently in each lineage. Southern hybridizations showed evidence of genomic alterations involving Germ1 in each species. Our results suggest that Germ1 is a R2 retroelement that occurs in the genome of P. marinus and other petromyzontid lampreys, and that its diminution is incidental to the reduction in rDNA copies during embryogenesis.
Collapse
|
9
|
Bryant SA, Herdy JR, Amemiya CT, Smith JJ. Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus). Mol Biol Evol 2016; 33:2337-44. [PMID: 27288344 DOI: 10.1093/molbev/msw104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The sea lamprey (Petromyzon marinus) is a basal vertebrate that undergoes developmentally programmed genome rearrangements (PGRs) during early development. These events facilitate the elimination of ∼20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. Thus far only a handful of germline-specific genes have been definitively identified within the estimated 500 Mb of DNA that is deleted during PGR, although a few thousand germline-specific genes are thought to exist. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a new transcriptomic dataset derived from adult germline and the early embryonic stages during which PGR occurs. Follow-up validation studies identified 44 germline-specific genes and further characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that many of these genes are differentially expressed during early embryogenesis and presumably function in the early development of the germline. Ontology analyses indicate that many of these germline-specific genes play known roles in germline development, pluripotency, and oncogenesis (when misexpressed). These studies provide support for the theory that PGR serves to segregate molecular functions related to germline development/pluripotency in order to prevent their potential misexpression in somatic cells. This larger set of eliminated genes also allows us to extend the evolutionary/developmental breadth of this theory, as some deleted genes (or their gnathostome homologs) appear to be associated with the early development of somatic lineages, perhaps through the evolution of novel functions within gnathostome lineages.
Collapse
Affiliation(s)
| | | | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle Department of Biology, University of Washington, Seattle
| | | |
Collapse
|
10
|
Gutierrez-Mazariegos J, Nadendla EK, Studer RA, Alvarez S, de Lera AR, Kuraku S, Bourguet W, Schubert M, Laudet V. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150484. [PMID: 27069642 PMCID: PMC4821253 DOI: 10.1098/rsos.150484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Eswar Kumar Nadendla
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Romain A. Studer
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI)—Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Susana Alvarez
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Angel R. de Lera
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
11
|
Li H, Richardson WD. Evolution of the CNS myelin gene regulatory program. Brain Res 2015; 1641:111-121. [PMID: 26474911 DOI: 10.1016/j.brainres.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
12
|
Caputo Barucchi V, Giovannotti M, Nisi Cerioni P, Splendiani A. Genome duplication in early vertebrates: insights from agnathan cytogenetics. Cytogenet Genome Res 2013; 141:80-9. [PMID: 23949002 DOI: 10.1159/000354098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Agnathans represent a remnant of a primitive offshoot of the vertebrates, and the long evolutionary separation between their 2 living groups, namely hagfishes and lampreys, could explain profound biological differences, also in karyotypes and genome sizes. Here, cytogenetic studies available on these vertebrates were summarized and data discussed with reference to the recently demonstrated monophyly of this group and to the 2 events of whole genome duplication (1R and 2R) characterizing the evolution of vertebrates. The comparison of cytogenetic data and phylogenetic relationships among agnathans and gnathostomes seems to support the hypothesis that 1R and 2R occurred before the evolutionary divergence between jawless and jawed vertebrates.
Collapse
|
13
|
McKinnon C, Drouin G. Chromatin diminution in the copepod Mesocyclops edax: elimination of both highly repetitive and nonhighly repetitive DNA. Genome 2013; 56:1-8. [PMID: 23379333 DOI: 10.1139/gen-2012-0097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin diminution, a developmentally regulated process of DNA elimination, is found in numerous eukaryotic species. In the copepod Mesocyclops edax, some 90% of its genomic DNA is eliminated during the differentiation of embryonic cells into somatic cells. Previous studies have shown that the eliminated DNA contains highly repetitive sequences. Here, we sequenced DNA fragments from pre- and postdiminution cells to determine whether nonhighly repetitive sequences are also eliminated during the process of chromatin diminution. Comparative analyses of these sequences, as well as the sequences eliminated from the genome of the copepod Cyclops kolensis, show that they all share similar abundances of tandem repeats, dispersed repeats, transposable elements, and various coding and noncoding sequences. This suggests that, in the chromatin diminution observed in M. edax, both highly repetitive and nonhighly repetitive sequences are eliminated and that there is no bias in the type of nonhighly repetitive DNA being eliminated.
Collapse
Affiliation(s)
- Christian McKinnon
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
14
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bigot Y, Jegot G, Casteret S, Aupinel P, Tasei JN. DNA modifications and genome rearrangements during the development and sex differentiation of the bumble bee Bombus terrestris. INSECT MOLECULAR BIOLOGY 2011; 20:165-175. [PMID: 20977508 DOI: 10.1111/j.1365-2583.2010.01052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bombus terrestris is a bumble bee that, like most hymenopteran species, exhibits ploidy-specific sex determination controlled by a single sex gene. Depending on their ploidy and the queen pheromone repression, the imagoes differentiate into three castes: males, workers and queens. Here, we focus on the differences of genome organization that occur during development and sex differentiation. We found that cytosine methylation is a significant epigenetic factor with profiles that can be correlated with both processes. We also showed that two kinds of genomic rearrangement occur. The first consists of important DNA amplifications that have sequence profiles that differ in the different developmental instars and sexes. In the second kind, DNA losses also occur, at least involving the mosaic transposable element B. terrestris mosaic repeat 1 (BTMR1).
Collapse
Affiliation(s)
- Y Bigot
- UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France.
| | | | | | | | | |
Collapse
|
16
|
Caputo V, Giovannotti M, Cerioni PN, Splendiani A, Tagliavini J, Olmo E. Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): conventional and FISH analysis. Chromosome Res 2011; 19:481-91. [DOI: 10.1007/s10577-011-9197-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022]
|
17
|
Kataoka K, Mochizuki K. Programmed DNA elimination in Tetrahymena: a small RNA-mediated genome surveillance mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:156-73. [PMID: 21915788 DOI: 10.1007/978-1-4614-0332-6_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) was initially discovered as a post-transcriptional gene silencing mechanism in which short RNAs are used to target complementary RNAs for degradation. During the past several years, it has been demonstrated that RNAi-related processes are also involved in transcriptional gene silencing by directing formation of heterochromatin. The dynamic DNA rearrangement during sexual reproduction of the ciliated protozoan Tetrahymena provides an extreme example of RNAi-directed heterochromatin formation. In this process, small RNAs of ∼28-29 nt, which are processed by the Dicer-like protein Dcl1p and are associated with the Argonaute family protein Twi1p, induce heterochromatin formation at complementary genomic sequences by recruiting the histone H3 lysine 9/27 methyltransferase Ezl1p and chromodomain proteins. Eventually these heterochromatinized regions are targeted for DNA elimination. In many eukaryotes, one of the major roles for RNAi-related mechanisms is silencing transposons, and DNA elimination in Tetrahymena is also believed to have evolved as a transposon defense by removing transposon-related sequences from the somatic genome. Because DNA elimination is achieved by the coordinated actions of noncoding RNA transcription, RNA processing, RNA transport, RNA-RNA and RNA-protein interactions, RNA degradation and RNA-directed chromatin modifications, DNA elimination in Tetrahymena is a useful model to study 'RNA infrastructure'.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
18
|
Smith JJ, Saha NR, Amemiya CT. Genome biology of the cyclostomes and insights into the evolutionary biology of vertebrate genomes. Integr Comp Biol 2010; 50:130-7. [PMID: 21558194 PMCID: PMC3140258 DOI: 10.1093/icb/icq023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.
Collapse
Affiliation(s)
- J J Smith
- Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
19
|
Whole chromosome elimination and chromosome terminus elimination both contribute to somatic differentiation in Taiwanese hagfish Paramyxine sheni. Chromosome Res 2010; 18:383-400. [DOI: 10.1007/s10577-010-9122-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
|
20
|
Development and analysis of a germline BAC resource for the sea lamprey, a vertebrate that undergoes substantial chromatin diminution. Chromosoma 2010; 119:381-9. [PMID: 20195622 DOI: 10.1007/s00412-010-0263-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/05/2023]
Abstract
Over the last several years, the sea lamprey (Petromyzon marinus) has grown substantially as a model for understanding the evolutionary fundaments and capacity of vertebrate developmental and genome biology. Recent work on the lamprey genome has resulted in a preliminary assembly of the lamprey genome and led to the realization that nearly all somatic cell lineages undergo extensive programmed rearrangements. Here we describe the development of a bacterial artificial chromosome (BAC) resource for lamprey germline DNA and use sequence information from this resource to probe the subchromosomal structure of the lamprey genome. The arrayed germline BAC library represents approximately 10x coverage of the lamprey genome. Analyses of BAC-end sequences reveal that the lamprey genome possesses a high content of repetitive sequences (relative to human), which show strong clustering at the subchromosomal level. This pattern is not unexpected given that the sea lamprey genome is dispersed across a large number of chromosomes (n approximately 99) and suggests a low-copy DNA targeting strategy for efficiently generating informative paired-BAC-end linkages from highly repetitive genomes. This library therefore represents a new and biologically informed resource for understanding the structure of the lamprey genome and the biology of programmed genome rearrangement.
Collapse
|
21
|
Abstract
In general, the strict preservation of broad-scale structure is thought to be critical for maintaining the precisely tuned functionality of vertebrate genomes, although nearly all vertebrate species undergo a small number of programmed local rearrangements during development (e.g., remodeling of adaptive immune receptor loci). However, a limited number of metazoan species undergo much more extensive reorganizations as a normal feature of their development. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate, undergoes a dramatic remodeling of its genome, resulting in the elimination of hundreds of millions of base pairs (and at least one transcribed locus) from many somatic cell lineages during embryonic development. These studies reveal the highly dynamic nature of the lamprey genome and provide the first example of broad-scale programmed rearrangement of a definitively vertebrate genome. Understanding the mechanisms by which this vertebrate species regulates such extensive remodeling of its genome will provide invaluable insight into factors that can promote stability and change in vertebrate genomes.
Collapse
|
22
|
Itoh Y, Kampf K, Pigozzi MI, Arnold AP. Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma 2009; 118:527-36. [PMID: 19452161 PMCID: PMC2701497 DOI: 10.1007/s00412-009-0216-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/30/2009] [Accepted: 04/30/2009] [Indexed: 11/29/2022]
Abstract
The zebra finch (Taeniopygia guttata) germline-restricted chromosome (GRC) is the largest chromosome and has a unique system of transmission in germ cells. In the male, the GRC exists as a single heterochromatic chromosome in the germline and is eliminated from nuclei in late spermatogenesis. In the female, the GRC is bivalent and euchromatic and experiences recombination. These characteristics suggest a female-specific or female-beneficial function of the GRC. To shed light on the function of GRC, we cloned a portion of the GRC using random amplified polymorphic DNA-polymerase chain reaction and analyzed it using molecular genetic and cytogenetic methods. The GRC clone hybridized strongly to testis but not blood DNA in genomic Southern blots. In fluorescent in situ hybridization analysis on meiotic chromosomes from synaptonemal complex spreads, the probe showed hybridization across a large area of the GRC, suggesting that it contains repetitive sequences. We isolated a sequence homologous to the GRC from zebra finch chromosome 3 and a region of chicken chromosome 1 that is homologous to zebra finch chromosome 3; the phylogenetic analysis of these three sequences suggested that the GRC sequence and the zebra finch chromosome 3 sequence are most closely related. Thus, the GRC sequences likely originated from autosomal DNA and have evolved after the galliform-passeriform split. The present study provides a foundation for further study of the intriguing GRC.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
23
|
Awata H, Noto T, Endoh H. Peculiar behavior of distinct chromosomal DNA elements during and after development in the dicyemid mesozoan Dicyema japonicum. Chromosome Res 2007; 14:817-30. [PMID: 17139531 DOI: 10.1007/s10577-006-1084-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 11/26/2022]
Abstract
The dicyemid mesozoans are obligate parasites that inhabit the cephalopod renal appendage. Dicyemids have a simple body, consisting of approximately 30 cells: one long cylindrical axial cell contains intracellular stem cells (called axoblast), from which embryos are derived, and is surrounded by some 30 peripheral somatic cells. Somatic cells divide at most eight times in their life span, and never divide after differentiation. During early somatic cell development, numerous unique DNA sequences are first amplified and then eliminated, in the form of extrachromosomal circular DNA, leading to genome reduction. In this study we demonstrate that the remaining sequences, single-copy genes and repetitive sequences, have very different fates. Single-copy genes, such as beta-tubulin, are initially amplified, presumably via endoreduplication, but subsequently decrease in copy number through development, suggesting that the whole genome is initially amplified and then the amplified DNAs are simply diluted in successive cell divisions, with little DNA replication. In contrast, repetitive sequences are maintained even in terminally differentiated somatic cell nuclei. Considering the increasing intensity of in-situ hybridization, incorporation of BrdU, and a general correlation between nuclear content and cell size, those repetitive sequences must be selectively endoreplicated in the peripheral cell nucleus, concomitant with the increase of cell size. The biological significance of this mechanism is discussed as a unique dicyemid adaptation to parasitism.
Collapse
Affiliation(s)
- Hiroko Awata
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
24
|
Drouin G. Chromatin diminution in the copepod Mesocyclops edax: diminution of tandemly repeated DNA families from somatic cells. Genome 2006; 49:657-65. [PMID: 16936845 DOI: 10.1139/g06-022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin diminution, i.e., the loss of selected chromosomal regions during the differentiation of early embryonic cells into somatic cells, has been described in taxa as varied as ciliates, copepods, insects, nematodes, and hagfish. The nature of the eliminated DNA has been extensively studied in ciliate, nematode, and hagfish species. However, the small size of copepods, which makes it difficult to obtain enough DNA from early embryonic cells for cloning and sequencing, has limited such studies. Here, to identify the sequences eliminated from the somatic cells of a copepod species that undergoes chromatin diminution, we randomly amplified DNA fragments from germ line and somatic line cells of Mesocyclops edax, a freshwater cyclopoid copepod. Of 47 randomly amplified germ line clones, 45 (96%) contained short, tandemly repeated sequences composed of either 2 bp CA-repeats, 8 bp CAAATAGA-repeats, or 9 bp CAAATTAAA-repeats. In contrast, of 83 randomly amplified somatic line clones, only 47 (57%) contained such short, tandemly repeated sequences. As previously observed in some nematode species, our results therefore show that there is partial elimination of chromosomal regions containing (CAAATAGA and CAAATTAAA) repeated sequences during the chromatin diminution observed in the somatic cells of M. edax. We speculate that chromatin diminution might have evolved repeatedly by recruitment of RNAi-related mechanisms to eliminate nonfunctional tandemly repeated DNA sequences from the somatic genome of some species.
Collapse
Affiliation(s)
- Guy Drouin
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Otawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
25
|
Pigozzi MI, Solari AJ. The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 2005; 114:403-9. [PMID: 16215738 DOI: 10.1007/s00412-005-0025-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/11/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
In the zebra finch (Taeniopygia guttata), there is a germ-line-restricted chromosome regularly present in males and females. A reexamination of male and female meiosis in the zebra finch showed that this element forms a euchromatic bivalent in oocytes, but it is always a single, heterochromatic element in spermatocytes. Immunostaining with anti-MLH1 showed that the bivalent in oocytes has two or three foci with a localized pattern, indicating the regular occurrence of recombination. In male meiosis, the single restricted chromosome forms an axis that contains the cohesin subunit SMC3, and the associated chromatin is densely packed until late pachytene. Electron microscopy of thin-sectioned seminiferous tubules shows that the restricted chromosome is eliminated in postmeiotic stages in the form of packed chromatin inside a micronucleus, visible in the cytoplasm of young spermatids. The selective condensation of the restricted chromosome during early meiotic prophase in males is interpreted as a strategy to avoid the triggering of asynaptic checkpoints, but this condensation is reversed prior to the final condensation that leads to its (ulterior) elimination. Recombination during female meiosis may prevent the genetic attrition of the restricted chromosome and, along with the elimination in male germ cells, ensures its regular transmission through females.
Collapse
Affiliation(s)
- M I Pigozzi
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 Piso 10, C1121ABG, Buenos Aires, Argentina.
| | | |
Collapse
|